scholarly journals Influence of aging and gadolinium exposure on T1, T2, and T2*-relaxation in healthy women with an increased risk of breast cancer with and without prior exposure to gadoterate meglumine at 3.0-T brain MR imaging

Author(s):  
Kathrin Barbara Krug ◽  
Christina Jane Burke ◽  
Kilian Weiss ◽  
Pascal A. T. Baltzer ◽  
Kerstin Rhiem ◽  
...  

Abstract Objectives We examined the effects of aging and of gadolinium-based contrast agent (GBCA) exposure on MRI measurements in brain nuclei of healthy women. Methods This prospective, IRB-approved single-center case-control study enrolled 100 healthy participants of our high-risk screening center for hereditary breast cancer, who had received at least six doses of macrocyclic GBCA (exposed group) or were newly entering the program (GBCA-naïve group). The cutoff “at least six doses” was chosen to be able to include a sufficient number of highly exposed participants. All participants underwent unenhanced 3.0-T brain MRI including quantitative T1, T2, and R2* mapping and T1- and T2-weighted imaging. The relaxation times/signal intensities were derived from region of interest measurements in the brain nuclei performed by a radiologist and a neuroradiologist, both board certified. Statistical analysis was based on descriptive evaluations and uni-/multivariable analyses. Results The participants (exposed group: 49, control group: 51) were aged 42 ± 9 years. In a multivariable model, age had a clear impact on R2* (p < 0.001–0.012), T2 (p = 0.003–0.048), and T1 relaxation times/signal intensities (p < 0.004–0.046) for the majority of deep brain nuclei, mostly affecting the substantia nigra, globus pallidus (GP), nucleus ruber, thalamus, and dentate nucleus (DN). The effect of prior GBCA administration on T1 relaxation times was statistically significant for the DN, GP, and pons (p = 0.019–0.037). Conclusions In a homogeneous group of young to middle-aged healthy females aging had an effect on T2 and R2* relaxation times and former GBCA applications influenced the measured T1 relaxation times. Key Points The quantitative T1, T2, and R2* relaxation times measured in women at high risk of developing breast cancer showed characteristic bandwidth for all brain nuclei examined at 3.0-T MRI. The effect of participant age had a comparatively strong impact on R2*, T2, and T1 relaxation times for the majority of brain nuclei examined. The effect of prior GBCA administrations on T1 relaxation times rates was comparatively less pronounced, yielding statistically significant results for the dentate nucleus, globus pallidus, and pons. Summary statement Healthy women with and without previous GBCA-enhanced breast MRI exhibited age-related T2* and T2 relaxation alterations at 3.0 T-brain MRI. T1 relaxation alterations due to prior GBCA administration were comparatively less pronounced.

2005 ◽  
Vol 20 (1) ◽  
pp. 41-44 ◽  
Author(s):  
Filip Spaniel ◽  
Vit Herynek ◽  
Tomas Hajek ◽  
Monika Dezortova ◽  
Jiri Horacek ◽  
...  

AbstractT1 and T2 relaxation times were examined in four pairs of monozygotic (MZ) twins discordant and concordant for schizophrenia with low and high genetic loading for the illness and five healthy control MZ twin pairs. Patients with schizophrenia (n = 11) showed significant prolongation in T1 relaxation times in the globus pallidus (GP) bilaterally (P < 0.005, Bonferroni corrected) when compared to 14 healthy MZ twins.


2020 ◽  
Vol 9 (6) ◽  
pp. 1857
Author(s):  
Chia-Wei Li ◽  
Ai-Ling Hsu ◽  
Chi-Wen C. Huang ◽  
Shih-Hung Yang ◽  
Chien-Yuan Lin ◽  
...  

The reliability of relaxation time measures in synthetic magnetic resonance images (MRIs) of homemade phantoms were validated, and the diagnostic suitability of synthetic imaging was compared to that of conventional MRIs for detecting ischemic lesions. Phantoms filled with aqueous cupric-sulfate (CuSO4) were designed to mimic spin-lattice (T1) and spin-spin (T2) relaxation properties and were used to compare their accuracies and stabilities between synthetic and conventional scans of various brain tissues. To validate the accuracy of synthetic imaging in ischemic stroke diagnoses, the synthetic and clinical scans of 18 patients with ischemic stroke were compared, and the quantitative contrast-to-noise ratios (CNRs) were measured, using the Friedman test to determine significance in differences. Results using the phantoms showed no significant differences in the interday and intersession synthetic quantitative T1 and T2 values. However, between synthetic and referenced T1 and T2 values, differences were larger for longer relaxation times, showing that image intensities in synthetic scans are relatively inaccurate in the cerebrospinal fluid (CSF). Similarly, CNRs in CSF regions of stroke patients were significantly different on synthetic T2-weighted and T2-fluid-attenuated inversion recovery images. In contrast, differences in stroke lesions were insignificant between the two. Therefore, interday and intersession synthetic T1 and T2 values are highly reliable, and discrepancies in synthetic T1 and T2 relaxation times and image contrasts in CSF regions do not affect stroke lesion diagnoses. Additionally, quantitative relaxation times from synthetic images allow better estimations of ischemic stroke onset time, consequently increasing confidence in synthetic MRIs as diagnostic tools for ischemic stroke.


2019 ◽  
Vol 8 (11) ◽  
pp. 1877 ◽  
Author(s):  
Patrick Doeblin ◽  
Djawid Hashemi ◽  
Radu Tanacli ◽  
Tomas Lapinskas ◽  
Rolf Gebker ◽  
...  

The characteristics and optimal management of heart failure with a moderately reduced ejection fraction (HFmrEF, LV-EF 40–50%) are still unclear. Advanced cardiac MRI offers information about function, fibrosis and inflammation of the myocardium, and might help to characterize HFmrEF in terms of adverse cardiac remodeling. We, therefore, examined 17 patients with HFpEF, 18 with HFmrEF, 17 with HFrEF and 17 healthy, age-matched controls with cardiac MRI (Phillips 1.5 T). T1 and T2 relaxation time mapping was performed and the extracellular volume (ECV) was calculated. Global circumferential (GCS) and longitudinal strain (GLS) were derived from cine images. GLS (−15.7 ± 2.1) and GCS (−19.9 ± 4.1) were moderately reduced in HFmrEF, resembling systolic dysfunction. Native T1 relaxation times were elevated in HFmrEF (1027 ± 40 ms) and HFrEF (1033 ± 54 ms) compared to healthy controls (972 ± 31 ms) and HFpEF (985 ± 32 ms). T2 relaxation times were elevated in HFmrEF (55.4 ± 3.4 ms) and HFrEF (56.0 ± 6.0 ms) compared to healthy controls (50.6 ± 2.1 ms). Differences in ECV did not reach statistical significance. HFmrEF differs from healthy controls and shares similarities with HFrEF in cardiac MRI parameters of fibrosis and inflammation.


Cancers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 4067
Author(s):  
Manabu Kinoshita ◽  
Masato Uchikoshi ◽  
Souichiro Tateishi ◽  
Shohei Miyazaki ◽  
Mio Sakai ◽  
...  

One of the most crucial yet challenging issues for glioma patient care is visualizing non-contrast-enhancing tumor regions. In this study, to test the hypothesis that quantitative magnetic resonance relaxometry reflects glioma tumor load within tissue and that it can be an imaging surrogate for visualizing non-contrast-enhancing tumors, we investigated the correlation between T1- and T2-weighted relaxation times, apparent diffusion coefficient (ADC) on magnetic resonance imaging, and 11C-methionine (MET) on positron emission tomography (PET). Moreover, we compared the T1- and T2-relaxation times and ADC with tumor cell density (TCD) findings obtained via stereotactic image-guided tissue sampling. Regions that presented a T1-relaxation time of >1850 ms but <3200 ms or a T2-relaxation time of >115 ms but <225 ms under 3 T indicated a high MET uptake. In addition, the stereotactic tissue sampling findings confirmed that the T1-relaxation time of 1850–3200 ms significantly indicated a higher TCD (p = 0.04). However, ADC was unable to show a significant correlation with MET uptake or with TCD. Finally, synthetically synthesized tumor load images from the T1- and T2-relaxation maps were able to visualize MET uptake presented on PET.


2021 ◽  
Vol 8 ◽  
Author(s):  
Shuang Li ◽  
Xuejing Duan ◽  
Guangxun Feng ◽  
Arlene Sirajuddin ◽  
Gang Yin ◽  
...  

Background: Cardiac magnetic resonance (CMR) has been shown to improve the diagnosis of myocarditis, but no systematic comparison of this technique is currently available. The purpose of this study was to compare the 2009 and 2018 Lake Louise Criteria (LLC) for the diagnosis of acute myocarditis using 3.0 T MRI with endomyocardial biopsy (EMB) as a reference and to provide the cutoff values for multiparametric CMR techniques.Methods: A total of 73 patients (32 ± 14 years, 71.2% men) with clinically suspected myocarditis undergoing EMB and CMR with 3.0 T were enrolled in the study. Patients were divided into two groups according to EMB results (EMB-positive and -negative groups). The CMR protocol consisted of cine-SSFP, T2 STIR, T2 mapping, early and late gadolinium enhancement (EGE, LGE), and pre- and post-contrast T1 mapping. Their potential diagnostic ability was assessed with receiver operating characteristic curves.Results: The myocardial T1 and T2 relaxation times were significantly higher in the EMB-positive group than in the EMB-negative group. Optimal cutoff values were 1,228 ms for T1 relaxation times and 58.5 ms for T2 relaxation times with sensitivities of 86.0 and 83.7% and specificities of 93.3 and 93.3%, respectively. The 2018 LLC had a better diagnostic performance than the 2009 LLC in terms of sensitivity, specificity, positive predictive value, and negative predictive value. T1 mapping + T2 mapping had the largest area under the curve (0.95) compared to other single or combined parameters (2018 LLC: 0.91; 2009 LLC: 0.76; T2 ratio: 0.71; EGEr: 0.67; LGE: 0.73; ). The diagnostic accuracy for the 2018 LLC was the highest (91.8%), followed by T1 mapping (89.0%) and T2 mapping (87.7%).Conclusion: Emerging technologies such as T1/ T2 mapping have significantly improved the diagnostic performance of CMR for the diagnosis of acute myocarditis. The 2018 LLC provided the overall best diagnostic performance in acute myocarditis compared to other single standard CMR parameters or combined parameters. There was no significant gain when 2018LLC is combined with the EGE sequence.


2014 ◽  
Vol 56 (11) ◽  
pp. 1388-1395 ◽  
Author(s):  
So-Yeon Lee ◽  
Hee-Jin Park ◽  
Heon-Ju Kwon ◽  
Mi Sung Kim ◽  
Seon Hyeong Choi ◽  
...  

Author(s):  
F M A van den Heuvel ◽  
A C Dimitriu-Leen ◽  
J Habets ◽  
R Nijveldt

Abstract Background Epipericardial fat necrosis (EFN) is a rare cause of chest pain which is often unrecognized. Case summary A 58 year-old male previously known with a transient ischaemic attack presented with a sharp, substernal chest pain. Pulmonary embolism was ruled out by computed tomography (CT) angiography. However, CT angiography revealed an inhomogeneous epipericardial mass. On cardiovascular magnetic resonance imaging (CMR) the mass had an inhomogeneous signal intensity without infiltration of surrounding tissue. Late gadolinium enhancement imaging showed subtle hyperenhancement. Tissue characterization by means of parametric mapping revealed very low native T1 relaxation times and increased T2 relaxation times. In conclusion, the epipericardial mass showed fibro-fatty inflammatory markers, suggestive of EFN. The chest pain resolved spontaneously. Follow up CT 3 months later showed a marked regression of the mass which confirmed the diagnosis EFN. Discussion EFN is a benign and self-limiting inflammatory cause of chest pain which can be diagnosed with multi-modality imaging and must not be overlooked in the differential diagnosis of patients with acute pleuritic chest pain.


Sign in / Sign up

Export Citation Format

Share Document