Heart-Model-Based Automated Method for Left Ventricular Measurements in Cardiac MR: Comparison with Manual and Semi-automated Methods

Author(s):  
Seung Hoon Chae ◽  
Whal Lee ◽  
Eun-Ah Park ◽  
Jin Wook Chung
2006 ◽  
Vol 10 (4) ◽  
pp. 632-641 ◽  
Author(s):  
S.W.J. Ubbink ◽  
P.H.M. Bovendeerd ◽  
T. Delhaas ◽  
T. Arts ◽  
F.N. van de Vosse

2019 ◽  
Vol 12 (3) ◽  
pp. 229-237 ◽  
Author(s):  
Alban Revy ◽  
François Hallouard ◽  
Sandrine Joyeux-Klamber ◽  
Andrea Skanjeti ◽  
Catherine Rioufol ◽  
...  

Objective: Recent gallium-68 labeled peptides are of increasing interest in PET imaging in nuclear medicine. Somakit TOC® is a radiopharmaceutical kit registered in the European Union for the preparation of [68Ga]Ga-DOTA-TOC used for the diagnosis of neuroendocrine tumors. Development of a labeling process using a synthesizer is particularly interesting for the quality and reproducibility of the final product although only manual processes are described in the Summary of Product (SmPC) of the registered product. The aim of the present study was therefore to evaluate the feasibility and value of using an automated synthesizer for the preparation of [68Ga]Ga-DOTA-TOC according to the SmPC of the Somakit TOC®. Methods: Three methods of preparation were compared; each followed the SmPC of the Somakit TOC®. Over time, overheads, and overexposure were evaluated for each method. Results: Mean±SD preparation time was 26.2±0.3 minutes for the manual method, 28±0.5 minutes for the semi-automated, and 40.3±0.2 minutes for the automated method. Overcost of the semi-automated method is 0.25€ per preparation for consumables and from 0.58€ to 0.92€ for personnel costs according to the operator (respectively, technician or pharmacist). For the automated method, overcost is 70€ for consumables and from 4.06€ to 6.44€ for personnel. For the manual method, extremity exposure was 0.425mSv for the right finger, and 0.350mSv for the left finger; for both the semi-automated and automated method extremity exposure were below the limit of quantification. Conclusion: The present study reports for the first time both the feasibility of using a [68Ga]- radiopharmaceutical kit with a synthesizer and the limits for the development of a fully automated process.


2003 ◽  
Vol 285 (1) ◽  
pp. H316-H324 ◽  
Author(s):  
Richard Southworth ◽  
Pamela B. Garlick

The clinical hallmarks of hibernating myocardium include hypocontractility while retaining an inotropic reserve (using dobutamine echocardiography), having normal or increased [18F]fluoro-2-deoxyglucose-6-phosphate (18FDG6P) accumulation associated with decreased coronary flow [flow-metabolism mismatch by positron emission tomography (PET)], and recovering completely postrevascularization. In this study, we investigated an isolated rat heart model of hibernation using experimental equivalents of these clinical techniques. Rat hearts ( n = 5 hearts/group) were perfused with Krebs-Henseleit buffer for 40 min at 100% flow and 3 h at 10% flow and reperfused at 100% flow for 30 min (paced at 300 beats/min throughout). Left ventricular developed pressure fell to 30 ± 8% during 10% flow and recovered to 90 ± 7% after reperfusion. In an additional group, this recovery of function was found to be preserved over 2 h of reperfusion. Electron microscopic examination of hearts fixed at the end of the hibernation period demonstrated a lack of ischemic injury and an accumulation of glycogen granules, a phenomenon observed clinically. In a further group, hearts were challenged with dobutamine during the low-flow period. Hearts demonstrated an inotropic reserve at the expense of increased lactate leakage, with no appreciable creatine kinase release. PET studies used the same basic protocol in both dual- and globally perfused hearts (with 250MBq18FDG in Krebs buffer ± 0.4 mmol/l oleate). PET data showed flow-metabolism “mismatch;” whether regional or global,18FDG6P accumulation in ischemic tissue was the same as (glucose only) or significantly higher than (glucose + oleate) control tissue (0.023 ± 0.002 vs. 0.011 ± 0.002 normalized counts · s-1· g-1· min-1, P < 0.05) despite receiving 10% of the flow. This isolated rat heart model of acute hibernation exhibits many of the same characteristics demonstrated clinically in hibernating myocardium.


Radiology ◽  
2016 ◽  
Vol 278 (3) ◽  
pp. 714-722 ◽  
Author(s):  
John Eng ◽  
Robyn L. McClelland ◽  
Antoinette S. Gomes ◽  
W. Gregory Hundley ◽  
Susan Cheng ◽  
...  

Heart ◽  
2011 ◽  
Vol 97 (Suppl 1) ◽  
pp. A84-A85
Author(s):  
A. Shetty ◽  
S. Duckett ◽  
M. Ginks ◽  
Y. Ma ◽  
M. Sohal ◽  
...  

2020 ◽  
Vol 12 (7) ◽  
pp. 1185 ◽  
Author(s):  
Roxane J. Francis ◽  
Mitchell B. Lyons ◽  
Richard T. Kingsford ◽  
Kate J. Brandis

Using drones to count wildlife saves time and resources and allows access to difficult or dangerous areas. We collected drone imagery of breeding waterbirds at colonies in the Okavango Delta (Botswana) and Lowbidgee floodplain (Australia). We developed a semi-automated counting method, using machine learning, and compared effectiveness of freeware and payware in identifying and counting waterbird species (targets) in the Okavango Delta. We tested transferability to the Australian breeding colony. Our detection accuracy (targets), between the training and test data, was 91% for the Okavango Delta colony and 98% for the Lowbidgee floodplain colony. These estimates were within 1–5%, whether using freeware or payware for the different colonies. Our semi-automated method was 26% quicker, including development, and 500% quicker without development, than manual counting. Drone data of waterbird colonies can be collected quickly, allowing later counting with minimal disturbance. Our semi-automated methods efficiently provided accurate estimates of nesting species of waterbirds, even with complex backgrounds. This could be used to track breeding waterbird populations around the world, indicators of river and wetland health, with general applicability for monitoring other taxa.


Sign in / Sign up

Export Citation Format

Share Document