scholarly journals Experimental Flow Field Investigation of the Bio-Inspired Corrugated Wing for MAV Applications

2021 ◽  
Vol 13 (2) ◽  
pp. 37-50
Author(s):  
Y. D. DWIVEDI ◽  
ABHISHEK MOHAPATRA ◽  
T. BLESSINGTON ◽  
Md IRFAN

This is an experimental flow field study of a bio-inspired corrugated finite wing from the dragonfly intended to assess the flow behavior over the wing and compare it with a wing of the same geometry with filled corrugation, at low Reynolds numbers 46000 and 67000. The work purpose is to explore the potential application of such types of wings for Micro Air Vehicles (MAVs) or micro sized Unmanned Air Vehicles (UAVs). Two types of wings are taken into account: first wing was a bio-inspired corrugated wing which was obtained from the mid span of the dragonfly, and the second wing was the same geometry with filled corrugation. Both wings were fabricated by using 3-D printing machine. The tufts were glued at three different locations i.e. at center, 30%, and 60% of the semi-span towards the right side of the wing at the trailing edge. The boundary layers were measured by using boundary layer rakes inside the open-end low speed wing tunnel with varied angles of attack. The results of the tuft flow visualization showed that the flow pattern at different span locations was different at different angles of attack and different wing velocities (Reynolds number). The fluctuations of the two different wings at the same angle of attack and Reynolds number were found different. Also, the directions of the flow for both wings were found to be different at different span locations. The boundary layer measurement results for both wings were found to be different at the same angles of attack and Reynolds numbers. The flow pattern also showed that the wing’s upper as well as lower surface behaved differently on the same wing under the same measurement conditions. The results showed that the corrugated wing outperformed the conventional wing at low Reynolds number and the stall angle of the corrugated wing was more than the conventional wing.

2010 ◽  
Vol 133 (3) ◽  
Author(s):  
Darius D. Sanders ◽  
Walter F. O’Brien ◽  
Rolf Sondergaard ◽  
Marc D. Polanka ◽  
Douglas C. Rabe

There has been a need for improved prediction methods for low pressure turbine (LPT) blades operating at low Reynolds numbers. This is known to occur when LPT blades are subjugated to high altitude operations causing a decrease in the inlet Reynolds number. Boundary layer separation is more likely to be present within the flowfield of the LPT stages due to increase in the region adverse pressure gradients on the blade suction surface. Accurate CFD predictions are needed in order to improve design methods and performance prediction of LPT stages operating at low Reynolds numbers. CFD models were created for the flow over two low pressure turbine blade designs using a new turbulent transitional flow model, originally developed by Walters and Leylek (2004, “A New Model for Boundary Layer Transition Using a Single Point RANS Approach,” ASME J. Turbomach., 126(1), pp. 193–202). Part I of this study applied Walters and Leylek’s model to a cascade CFD model of a LPT blade airfoil with a light loading level. Flows were simulated over a Reynolds number range of 15,000–100,000 and predicted the laminar-to-turbulent transitional flow behavior adequately. It showed significant improvement in performance prediction compared to conventional RANS turbulence models. Part II of this paper presents the application of the prediction methodology developed in Part I to both two-dimensional and three-dimensional cascade models of a largely separated LPT blade geometry with a high blade loading level. Comparisons were made with available experimental cascade results on the prediction of the inlet Reynolds number effect on surface static pressure distribution, suction surface boundary layer behavior, and the wake total pressure loss coefficient. The kT-kL-ω transitional flow model accuracy was judged sufficient for an understanding of the flow behavior within the flow passage, and can identify when and where a separation event occurs. This model will provide the performance prediction needed for modeling of low Reynolds number effects on more complex geometries.


2012 ◽  
Vol 134 (11) ◽  
Author(s):  
A. B. Maynard ◽  
J. S. Marshall

The force acting on a spherical particle fixed to a wall and immersed in an axisymmetric straining flow is examined for small Reynolds numbers. The steady, incompressible flow field is computed using an axisymmetric finite-volume method over conditions spanning five decades in the Reynolds number. The flow is characterized by the formation of a vortex ring structure in the wedge region formed between the particle lower surface and the plane wall. A power law expression for the dimensionless particle force is obtained as a function of the Reynolds number, which is found to hold with excellent accuracy for Reynolds numbers below about 0.1.


2010 ◽  
Vol 133 (3) ◽  
Author(s):  
Darius D. Sanders ◽  
Walter F. O’Brien ◽  
Rolf Sondergaard ◽  
Marc D. Polanka ◽  
Douglas C. Rabe

There is an increasing interest in design methods and performance prediction for aircraft engine turbines operating at low Reynolds numbers. In this regime, boundary layer separation may be more likely to occur in the turbine flow passages. For accurate computational fluid dynamics (CFD) predictions of the flow, correct modeling of laminar-turbulent boundary layer transition is essential to capture the details of the flow. To investigate possible improvements in model fidelity, CFD models were created for the flow over two low pressure turbine blade designs. A new three-equation eddy-viscosity type turbulent transitional flow model, originally developed by Walters and Leylek (2004, “A New Model for Boundary Layer Transition Using a Single Point RANS Approach,” ASME J. Turbomach., 126(1), pp. 193–202), was employed for the current Reynolds averaged Navier–Stokes (RANS) CFD calculations. Previous studies demonstrated the ability of this model to accurately predict separation and boundary layer transition characteristics of low Reynolds number flows. The present research tested the capability of CFD with the Walters and Leylek turbulent transitional flow model to predict the boundary layer behavior and performance of two different turbine cascade configurations. Flows over low pressure turbine (LPT) blade airfoils with different blade loading characteristics were simulated over a Reynolds number range of 15,000–100,000 and predictions were compared with experimental cascade results. Part I of this paper discusses the prediction methodology that was developed and its validation using a lightly loaded LPT blade airfoil design. The turbulent transitional flow model sensitivity to turbulent flow parameters was investigated and showed a strong dependence on freestream turbulence intensity with a second-order effect of turbulent length scale. Focusing on the calculation of the total pressure loss coefficients to judge performance, the CFD simulation incorporating Walters and Leylek’s turbulent transitional flow model produced adequate prediction of the Reynolds number performance for the lightly loaded LPT blade cascade geometry. Significant improvements in performance were shown over predictions of conventional RANS turbulence models. Historically, these models cannot adequately predict boundary layer transition.


1994 ◽  
Vol 280 ◽  
pp. 199-225 ◽  
Author(s):  
K. S. Yeo ◽  
B. C. Khoo ◽  
W. K. Chong

The linear stability of boundary-layer flow over compliant or flexible surfaces has been studied by Carpenter & Garrad (1985), Yeo (1988) and others on the assumption of local flow parallelism. This assumption is valid at large Reynolds numbers. Non-parallel effects due to growth of the boundary layer gain in significance and importance as one gets to lower Reynolds number. This is especially so for a compliant surface, which can sustain a variety of wall-related instabilities in addition to the Tollmien—Schlichting instabilities (TSI) that are found over rigid surfaces. The present paper investigates the influence of boundary-layer non-parallelism on the TSI and wall-related travelling-wave flutter (TWF) on compliant layers. Corrections to the growth rate of locally parallel theory for boundary-layer non-parallelism are obtained through a multiple-scale analysis. The results indicate that flow non-parallelism has an overall destabilizing influence on the TSI and TWF. Flow non-parallelism is also found to have a very strong destabilizing effect on the branch of TWF that stretches to low Reynolds number. The results obtained have important implications for the design and use of compliant layers at low Reynolds numbers.


2019 ◽  
Vol 11 (10) ◽  
pp. 168781401988416
Author(s):  
Mahmoud E Abd El-Latief ◽  
Khairy Elsayed ◽  
Mohamed Madbouli Abdelrahman

In this study, Aeshna cyanea dragonfly forewing mid-cross-section corrugated airfoil was simulated at ultra-low Reynolds number. The corrugated airfoil was compared with its smooth counterpart to study the effect of the corrugations upon the aerodynamic performance. Unsteady two-dimensional laminar flow was solved using FLUENT. This study was divided into gliding phase and flapping phase. In the gliding phase, the corrugated airfoil produced a higher lift force with respect to the profiled airfoil at both tested Reynolds numbers ([Formula: see text], [Formula: see text]) with comparable drag coefficient for all the tested angles of attack. In the flapping phase, both the corrugated airfoil and the flat-plate have a very similar flow behavior which yields a very similar aerodynamic performance at Re[Formula: see text]. A structural analysis was performed to compare the corrugated airfoil with the flat-plate. The analysis revealed the superiority of the corrugated airfoil over the flat-plate in decreasing the deflection under the applied load. The reduced frequency was varied to study its impact on the aerodynamic performance. By increasing the reduced frequency, the thrust and the lift forces increased by [Formula: see text]% and [Formula: see text]%, respectively. Any increase in the reduced frequency will increase lift and thrust forces, but the propulsive efficiency will deteriorate.


Author(s):  
Darius D. Sanders ◽  
Walter F. O’Brien ◽  
Rolf Sondergaard ◽  
Marc D. Polanka ◽  
Douglas C. Rabe

There is increasing interest in design methods and performance prediction for aircraft engine turbines operating at low Reynolds numbers. In this regime, boundary layer separation may be more likely to occur in the turbine flow passages. For accurate CFD predictions of the flow, correct modeling of laminar-turbulent boundary layer transition is essential to capture the details of the flow. To investigate possible improvements in model fidelity, CFD models were created for the flow over two low pressure turbine blade designs. A new three-equation eddy-viscosity type turbulent transitional flow model originally developed by Walters and Leylek was employed for the current RANS CFD calculations. Previous studies demonstrated the ability of this model to accurately predict separation and boundary layer transition characteristics of low Reynolds number flows. The present research tested the capability of CFD with the Walters and Leylek turbulent transitional flow model to predict the boundary layer behavior and performance of two different turbine cascade configurations. Flows over the Pack-B turbine blade airfoil and the midspan section of a typical low pressure turbine (TLPT) blade were simulated over a Reynolds number range of 15,000–100,000, and predictions were compared to experimental cascade results. The turbulent transitional flow model sensitivity to turbulent flow parameters was investigated and showed a strong dependence on free-stream turbulence intensity with a second order effect of turbulent length scale. Focusing on the calculation of the total pressure loss coefficients to judge performance, the CFD simulation incorporating Walters and Leylek’s turbulent transitional flow model produced adequate prediction of the Reynolds number performance for the TLPT blade cascade geometry. Furthermore, the correct qualitative flow response to separated shear was observed for the Pack-B blade airfoil. Significant improvements in performance predictions were shown over predictions of conventional RANS turbulence models that cannot adequately model boundary layer transition.


2005 ◽  
Vol 2005 (1) ◽  
pp. 1-15 ◽  
Author(s):  
Takayuki Matsunuma ◽  
Yasukata Tsutsui

The unsteady flow field downstream of axial-flow turbine rotors at low Reynolds numbers was investigated experimentally using hot-wire probes. Reynolds number, based on rotor exit velocity and rotor chord lengthReout,RT, was varied from3.2×104to12.8×104at intervals of1.0×104by changing the flow velocity of the wind tunnel. The time-averaged and time-dependent distributions of velocity and turbulence intensity were analyzed to determine the effect of Reynolds number. The reduction of Reynolds number had a marked influence on the turbine flow field. The regions of high turbulence intensity due to the wake and the secondary vortices were increased dramatically with the decreasing Reynolds number. The periodic fluctuation of the flow due to rotor-stator interaction also increased with the decreasing Reynolds number. The energy-dissipation thickness of the rotor midspan wake at the low Reynolds numberReout,RT=3.2×104was1.5times larger than that at the high Reynolds numberReout,RT=12.8×104. The curve of the−0.2power of the Reynolds number agreed with the measured energy-dissipation thickness at higher Reynolds numbers. However, the curve of the−0.4power law fitted more closely than the curve of the−0.2power law at lower Reynolds numbers below6.4×104.


2012 ◽  
Vol 710 ◽  
pp. 5-34 ◽  
Author(s):  
Philipp Schlatter ◽  
Ramis Örlü

AbstractA recent assessment of available direct numerical simulation (DNS) data from turbulent boundary layer flows (Schlatter & Örlü,J. Fluid Mech., vol. 659, 2010, pp. 116–126) showed surprisingly large differences not only in the skin friction coefficient or shape factor, but also in their predictions of mean and fluctuation profiles far into the sublayer. While such differences are expected at very low Reynolds numbers and/or the immediate vicinity of the inflow or tripping region, it remains unclear whether inflow and tripping effects explain the differences observed even at moderate Reynolds numbers. This question is systematically addressed by re-simulating the DNS of a zero-pressure-gradient turbulent boundary layer flow by Schlatteret al. (Phys. Fluids, vol. 21, 2009, art. 051702). The previous DNS serves as the baseline simulation, and the new DNS with a range of physically different inflow conditions and tripping effects are carefully compared. The downstream evolution of integral quantities as well as mean and fluctuation profiles is analysed, and the results show that different inflow conditions and tripping effects do indeed explain most of the differences observed when comparing available DNS at low Reynolds number. It is further found that, if transition is initiated inside the boundary layer at a low enough Reynolds number (based on the momentum-loss thickness)${\mathit{Re}}_{\theta } \lt 300$, all quantities agree well for both inner and outer layer for${\mathit{Re}}_{\theta } \gt 2000$. This result gives a lower limit for meaningful comparisons between numerical and/or wind tunnel experiments, assuming that the flow was not severely over- or understimulated. It is further shown that even profiles of the wall-normal velocity fluctuations and Reynolds shear stress collapse for higher${\mathit{Re}}_{\theta } $irrespective of the upstream conditions. In addition, the overshoot in the total shear stress within the sublayer observed in the DNS of Wu & Moin (Phys. Fluids, vol. 22, 2010, art. 085105) has been identified as a feature of transitional boundary layers.


1992 ◽  
Vol 114 (1) ◽  
pp. 135-142 ◽  
Author(s):  
J. Peterson ◽  
Y. Bayazitoglu

The current study examines the transition region of axisymmetric isothermal and buoyant jets of low Reynolds number, directed vertically upward into a stagnant, unstratified ambient. The region in which measurements were obtained allows examination of two types of transition occurring in the jet: from nozzle exit dominated to fully developed, and from momentum to buoyancy-dominated flow. Isothermal velocity data were acquired using a two-channel laser-Doppler anemometer for Reynolds numbers ranging from 850 to 7405. The buoyant cases studied had Froude numbers ranging from 12 to 6425 and Reynolds numbers from 525 to 6500. In each case data were taken from 5 to 44 nozzle diameters downstream. Curve fit approximations of the data were developed by assuming polynomial similarity profiles for the measured quantities. Each profile was individually curve fit because in the transition region under consideration the flow field is not necessarily similar. Profile constants were then curve fit to determine profile variation as a function of nozzle exit parameters and downstream location. These allow prediction of the downstream velocity flow field and turbulent flow field as a function of the Reynolds number, Froude number, and density ratio at the nozzle exit. Profile width and entrainment increased at low Reynolds number. Axial and radial velocity fluctuations were found to increase at low Reynolds number. The buoyant cases studied were found to have lower velocity fluctuations and significantly lower Reynolds stresses than isothermal cases of similar Reynolds number.


Sign in / Sign up

Export Citation Format

Share Document