propulsive efficiency
Recently Published Documents


TOTAL DOCUMENTS

252
(FIVE YEARS 59)

H-INDEX

30
(FIVE YEARS 2)

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Yue Wu ◽  
Changchuan Xie ◽  
Yang Meng ◽  
Chao Yang

In recent years, there has been widespread interest in the design of microair vehicles (MAVs) for flapping flight with high-aspect ratio wings due to their high efficiency and energy savings. However, the flexibility of a flapping wing causes the aeroelastic effect, which remains a subject of investigation. Generally, existing research simulates active bending and twisting of flexible wings under the assumption of neglecting flapping inertia. In this research, the kinematic optimization of a bionic wing with passive deformation in forward flight while undergoing flapping and pitching is considered. To this end, a computational aeroelasticity framework, which includes the three-dimensional unsteady vortex lattice method (UVLM) and the Newmark-β method, is constructed for flapping flight. Under the assumption of linear elastic deformation, this tool is capable of simulating attached flows over a thin wing and capturing unsteady effects of wakes. A bionic numerical wing with an aspect ratio of 6.5, chord Reynolds number of 1.9 × 105, and reduced frequency less than 0.1 is investigated in kinematic optimization. The computational aeroelasticity framework is combined with a global optimization algorithm to identify the optimal kinematics that maximize the propulsive efficiency under the minimum average lift constraint. Two types of numerical wings, rigid wing and flexible wing, are considered here to compare the influence of deformation on the aerodynamics of the flapping wing. The results show that the aeroelastic effect, which increases the flapping amplitude, yields a significant improvement in terms of propulsive efficiency. In addition, the optimization algorithm maximizes the thrust efficiency while satisfying the required lift. Moreover, the optimal kinematics of both the rigid wing and the flexible wing reach the maximum flapping angle, which indicates that a larger range of motions is needed for optimal kinetics when loosening the boundary conditions.


2021 ◽  
Vol 156 (A2) ◽  
Author(s):  
A F Molland ◽  
S R Turnock ◽  
D A Hudson ◽  
I K A P Utama

Environmental issues such as the emission of greenhouse gases, pollution, wash and noise are having an increasing impact on the design and operation of ships. These environmental issues together with economic factors, such as rising fuel costs, all ultimately lead to the need to minimise ship propulsive power. Various methods and devices for reducing propulsive power are reviewed and discussed. The most favourable methods, from a feasible and practical point of view, are identified and quantified. It is found that potential reductions in the resistance of existing good hull forms are relatively small, but optimising hull-propeller-rudder interaction offers very promising prospects for improvement. The biggest potential savings in power arise from optimised operational strategies such as the use of optimum trim, speed and weather routeing. Potential conflicts of interest when considering both economic and environmental requirements are investigated and discussed. Suitable design methodologies and procedures, taking into account economic and environmental factors, are suggested for the design of future ships.


2021 ◽  
Vol 152 (A2) ◽  
Author(s):  
I Buxton

Enabling technology permits the naval architect to do more with fewer resources, increasing output, decreasing cost and improving productivity, with the resulting benefits being widely distributed in a worldwide economy. For example a bulk carrier’s energy consumption per ton-mile today is less than 3% of what it was a century and half ago – due to more efficient machinery, larger hulls with lower resistance per ton and improved propulsive efficiency, yet with higher speed and shorter port times.


2021 ◽  
Vol 28 (4) ◽  
pp. 4-19
Author(s):  
Fengkun Li ◽  
Pengyao Yu ◽  
Qiang Wang ◽  
Guangzhao Li ◽  
Xiangcheng Wu

Abstract Numerical simulations of fluid-structure interaction (FSI) on an elastic foil heaving with constant amplitude in freestream flow are carried out at a low Reynolds number of 20,000. The commercial software STAR-CCM+ is employed to solve the flow field and the large-scale passive deformation of the structure. The results show that introducing a certain degree of flexibility significantly improves the thrust and efficiency of the foil. For each Strouhal number St considered, an optimal flexibility exists for thrust; however, the propulsive efficiency keeps increasing with the increase in flexibility. The visualisation of the vorticity fields elucidates the improvement of the propulsive characteristics by flexibility. Furthermore, the mechanism of thrust generation is discussed by comparing the time-varying thrust coefficient and vortex structure in the wake for both rigid and elastic foils. Finally, in addition to sinusoidal motions, we also consider the effect of non-sinusoidal trajectories defined by flattening parameter S on the propulsive characteristics for both rigid and elastic foils. The non-sinusoidal trajectories defined by S=2 are associated with the maximum thrust, and the highest values of propulsive efficiency are obtained with S=0.5 among the cases considered in this work.


Fluids ◽  
2021 ◽  
Vol 6 (11) ◽  
pp. 387
Author(s):  
Orrin Shindell ◽  
Hoa Nguyen ◽  
Nicholas Coltharp ◽  
Frank Healy ◽  
Bruce Rodenborn

The presence of a nearby boundary is likely to be important in the life cycle and evolution of motile flagellate bacteria. This has led many authors to employ numerical simulations to model near-surface bacterial motion and compute hydrodynamic boundary effects. A common choice has been the method of images for regularized Stokeslets (MIRS); however, the method requires discretization sizes and regularization parameters that are not specified by any theory. To determine appropriate regularization parameters for given discretization choices in MIRS, we conducted dynamically similar macroscopic experiments and fit the simulations to the data. In the experiments, we measured the torque on cylinders and helices of different wavelengths as they rotated in a viscous fluid at various distances to a boundary. We found that differences between experiments and optimized simulations were less than 5% when using surface discretizations for cylinders and centerline discretizations for helices. Having determined optimal regularization parameters, we used MIRS to simulate an idealized free-swimming bacterium constructed of a cylindrical cell body and a helical flagellum moving near a boundary. We assessed the swimming performance of many bacterial morphologies by computing swimming speed, motor rotation rate, Purcell’s propulsive efficiency, energy cost per swimming distance, and a new metabolic energy cost defined to be the energy cost per body mass per swimming distance. All five measures predicted that the optimal flagellar wavelength is eight times the helical radius independently of body size and surface proximity. Although the measures disagreed on the optimal body size, they all predicted that body size is an important factor in the energy cost of bacterial motility near and far from a surface.


2021 ◽  
Vol 33 (10) ◽  
pp. 107105
Author(s):  
Peng Zhou ◽  
Siyang Zhong ◽  
Hanbo Jiang ◽  
Xin Zhang ◽  
Raymond Chi-Hung So

Drones ◽  
2021 ◽  
Vol 5 (3) ◽  
pp. 90
Author(s):  
Ethan Billingsley ◽  
Mehdi Ghommem ◽  
Rui Vasconcellos ◽  
Abdessattar Abdelkefi

Migratory birds have the ability to save energy during flight by arranging themselves in a V-formation. This arrangement enables an increase in the overall efficiency of the group because the wake vortices shed by each of the birds provide additional lift and thrust to every member. Therefore, the aerodynamic advantages of such a flight arrangement can be exploited in the design process of micro air vehicles. One significant difference when comparing the anatomy of birds to the design of most micro air vehicles is that bird wings are not completely rigid. Birds have the ability to actively morph their wings during the flapping cycle. Given these aspects of avian flight, the objective of this work is to incorporate active bending and torsion into multiple pairs of flapping wings arranged in a V-formation and to investigate their aerodynamic behavior using the unsteady vortex lattice method. To do so, the first two bending and torsional mode shapes of a cantilever beam are considered and the aerodynamic characteristics of morphed wings for a range of V-formation angles, while changing the group size in order to determine the optimal configuration that results in maximum propulsive efficiency, are examined. The aerodynamic simulator incorporating the prescribed morphing is qualitatively verified using experimental data taken from trained kestrel flights. The simulation results demonstrate that coupled bending and twisting of the first mode shape yields the highest propulsive efficiency over a range of formation angles. Furthermore, the optimal configuration in terms of propulsive efficiency is found to be a five-body V-formation incorporating coupled bending and twisting of the first mode at a formation angle of 140 degrees. These results indicate the potential improvement in the aerodynamic performance of the formation flight when introducing active morphing and bioinspiration.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Enrique Sanmiguel-Rojas ◽  
Ramon Fernandez-Feria

Purpose This paper aims to analyze the propulsive performance of small-amplitude pitching foils at very high frequencies with double objectives: to find out scaling laws for the time-averaged thrust and propulsive efficiency at very high frequencies; and to characterize the Strouhal number above which the effect of turbulence on the mean values cannot be neglected. Design/methodology/approach The thrust force and propulsive efficiency of a pitching NACA0012 foil at high reduced frequencies (k) and a Reynolds number Re = 16 000 are analyzed using accurate numerical simulations, both assuming laminar flow and using a transition turbulence model. The time-averaged results are validated with available experimental data for k up to about 12 (Strouhal number, St, up to 0.6). This study also compares the present numerical results with the predictions of theoretical models and existing numerical results. For a foil pitching about its quarter chord with amplitude α0 = 8o, the reduced frequency is varied here up to k = 30 (St up to 2), much higher than in any previous numerical or experimental work. Findings For this pitch amplitude, turbulence effects are found negligible for St ≲ 0.8, and affecting less than 10% to the time-averaged thrust coefficient CT¯ for larger St Linear potential theory fails for very large k, even for the small pitch amplitude considered, particularly for the power coefficient, and therefore for the propulsive efficiency. It is found that CT¯ ∼ St2 for large St, in agreement with recent models, and the propulsive efficiency decays as 1/k, in disagreement with the linear potential theory. Originality/value Pitching foils are increasingly studied as efficient propellers and energy harvesting devices. Their performance at very high reduced frequencies has not been sufficiently analyzed before. The authors provide accurate numerical simulations to discern when turbulence is relevant for the computation of the time-averaged thrust and efficiency and how their scaling with the reduced frequency is affected in relation to the laminar-flow predictions. This is relevant because some small-amplitude theoretical models predict high propulsive efficiency of pitching foils at very high frequencies over certain ranges of the structural parameters, and only very accurate numerical simulations may decide on these predictions.


Author(s):  
Dennis Keller

AbstractThe scope of the present paper is to assess the potential of distributed propulsion for a regional aircraft regarding aero-propulsive efficiency. Several sensitivities such as the effect of wingtip propellers, thrust distribution, and shape modifications are investigated based on a configuration with 12 propulsors. Furthermore, an initial assessment of the high-lift performance is undertaken in order to estimate potential wing sizing effects. The performance of the main wing and the propellers are thereby equally considered with the required power being the overall performance indicator. The results indicate that distributed propulsion is not necessarily beneficial regarding the aero-propulsive efficiency in cruise flight. However, the use of wing tip propellers, optimization of the thrust distribution, and wing resizing effects lead to a reduction in required propulsive power by $$-2.9$$ - 2.9 to $$-3.3\,\%$$ - 3.3 % compared to a configuration with two propulsors. Adapting the leading edge to the local flow conditions did not show any substantial improvement in cruise configuration to date.


Sign in / Sign up

Export Citation Format

Share Document