The linear stability of boundary-layer flow over compliant walls: effects of boundary-layer growth

1994 ◽  
Vol 280 ◽  
pp. 199-225 ◽  
Author(s):  
K. S. Yeo ◽  
B. C. Khoo ◽  
W. K. Chong

The linear stability of boundary-layer flow over compliant or flexible surfaces has been studied by Carpenter & Garrad (1985), Yeo (1988) and others on the assumption of local flow parallelism. This assumption is valid at large Reynolds numbers. Non-parallel effects due to growth of the boundary layer gain in significance and importance as one gets to lower Reynolds number. This is especially so for a compliant surface, which can sustain a variety of wall-related instabilities in addition to the Tollmien—Schlichting instabilities (TSI) that are found over rigid surfaces. The present paper investigates the influence of boundary-layer non-parallelism on the TSI and wall-related travelling-wave flutter (TWF) on compliant layers. Corrections to the growth rate of locally parallel theory for boundary-layer non-parallelism are obtained through a multiple-scale analysis. The results indicate that flow non-parallelism has an overall destabilizing influence on the TSI and TWF. Flow non-parallelism is also found to have a very strong destabilizing effect on the branch of TWF that stretches to low Reynolds number. The results obtained have important implications for the design and use of compliant layers at low Reynolds numbers.

2013 ◽  
Vol 716 ◽  
pp. 638-657 ◽  
Author(s):  
Shintaro Imayama ◽  
P. Henrik Alfredsson ◽  
R. J. Lingwood

AbstractThe onset of transition for the rotating-disk flow was identified by Lingwood (J. Fluid. Mech., vol. 299, 1995, pp. 17–33) as being highly reproducible, which motivated her to look for absolute instability of the boundary-layer flow; the flow was found to be locally absolutely unstable above a Reynolds number of 507. Global instability, if associated with laminar–turbulent transition, implies that the onset of transition should be highly repeatable across different experimental facilities. While it has previously been shown that local absolute instability does not necessarily lead to linear global instability: Healey (J. Fluid. Mech., vol. 663, 2010, pp. 148–159) has shown, using the linearized complex Ginzburg–Landau equation, that if the finite nature of the flow domain is accounted for, then local absolute instability can give rise to linear global instability and lead directly to a nonlinear global mode. Healey (J. Fluid. Mech., vol. 663, 2010, pp. 148–159) also showed that there is a weak stabilizing effect as the steep front to the nonlinear global mode approaches the edge of the disk, and suggested that this might explain some reports of slightly higher transition Reynolds numbers, when located close to the edge. Here we look closely at the effects the edge of the disk have on laminar–turbulent transition of the rotating-disk boundary-layer flow. We present data for three different edge configurations and various edge Reynolds numbers, which show no obvious variation in the transition Reynolds number due to proximity to the edge of the disk. These data, together with the application (as far as possible) of a consistent definition for the onset of transition to others’ results, reduce the already relatively small scatter in reported transition Reynolds numbers, suggesting even greater reproducibility than previously thought for ‘clean’ disk experiments. The present results suggest that the finite nature of the disk, present in all real experiments, may indeed, as Healey (J. Fluid. Mech., vol. 663, 2010, pp. 148–159) suggests, lead to linear global instability as a first step in the onset of transition but we have not been able to verify a correlation between the transition Reynolds number and edge Reynolds number.


2017 ◽  
Vol 827 ◽  
pp. 155-193 ◽  
Author(s):  
Konstantinos Tsigklifis ◽  
Anthony D. Lucey

We study the fluid–structure interaction (FSI) of a compliant panel with developing Blasius boundary-layer flow. The linearised Navier–Stokes equations in velocity–vorticity form are solved using a Helmholtz decomposition coupled with the dynamics of a plate-spring compliant panel couched in finite-difference form. The FSI system is written as an eigenvalue problem and the various flow- and wall-based instabilities are analysed. It is shown that global temporal instability can occur through the interaction of travelling wave flutter (TWF) with a structural mode or as a resonance between Tollmien–Schlichting wave (TSW) instability and discrete structural modes of the compliant panel. The former is independent of compliant panel length and upstream inflow disturbances while the specific behaviour arising from the latter phenomenon is dependent upon the frequency of a disturbance introduced upstream of the compliant panel. The inclusion of axial displacements in the wall model does not lead to any further global instabilities. The dependence of instability-onset Reynolds numbers with structural stiffness and damping for the global modes is quantified. It is also shown that the TWF-based global instability is stabilised as the boundary layer progresses downstream while the TSW-based global instability exhibits discrete resonance-type behaviour as Reynolds number increases. At sufficiently high Reynolds numbers, a globally unstable divergence instability is identified when the wavelength of its wall-based mode is longer than that of the least stable TSW mode. Finally, a non-modal analysis reveals a high level of transient growth when the flow interacts with a compliant panel which has structural properties capable of reducing TSW growth but which is prone to global instability through wall-based modes.


2008 ◽  
pp. 48-65

The constant C and the near-wall damping function f in the eddyviscosityrelation of the k-ε model are evaluated from direct numerical simulation (DNS) data for developed channel and boundary-layer flow, eachat two Reynolds numbers. Various existing


2020 ◽  
Vol 32 (12) ◽  
pp. 122111
Author(s):  
Hongyuan Li ◽  
SongSong Ji ◽  
Xiangkui Tan ◽  
Zexiang Li ◽  
Yaolei Xiang ◽  
...  

2008 ◽  
Vol 614 ◽  
pp. 315-327 ◽  
Author(s):  
UWE EHRENSTEIN ◽  
FRANÇOIS GALLAIRE

A separated boundary-layer flow at the rear of a bump is considered. Two-dimensional equilibrium stationary states of the Navier–Stokes equations are determined using a nonlinear continuation procedure varying the bump height as well as the Reynolds number. A global instability analysis of the steady states is performed by computing two-dimensional temporal modes. The onset of instability is shown to be characterized by a family of modes with localized structures around the reattachment point becoming almost simultaneously unstable. The optimal perturbation analysis, by projecting the initial disturbance on the set of temporal eigenmodes, reveals that the non-normal modes are able to describe localized initial perturbations associated with the large transient energy growth. At larger time a global low-frequency oscillation is found, accompanied by a periodic regeneration of the flow perturbation inside the bubble, as the consequence of non-normal cancellation of modes. The initial condition provided by the optimal perturbation analysis is applied to Navier–Stokes time integration and is shown to trigger the nonlinear ‘flapping’ typical of separation bubbles. It is possible to follow the stationary equilibrium state on increasing the Reynolds number far beyond instability, ruling out for the present flow case the hypothesis of some authors that topological flow changes are responsible for the ‘flapping’.


2019 ◽  
Vol 875 ◽  
pp. 44-70 ◽  
Author(s):  
Karin Blackman ◽  
Laurent Perret ◽  
Romain Mathis

Urban-type rough-wall boundary layers developing over staggered cube arrays with plan area packing density, $\unicode[STIX]{x1D706}_{p}$, of 6.25 %, 25 % or 44.4 % have been studied at two Reynolds numbers within a wind tunnel using hot-wire anemometry (HWA). A fixed HWA probe is used to capture the outer-layer flow while a second moving probe is used to capture the inner-layer flow at 13 wall-normal positions between $1.25h$ and $4h$ where $h$ is the height of the roughness elements. The synchronized two-point HWA measurements are used to extract the near-canopy large-scale signal using spectral linear stochastic estimation and a predictive model is calibrated in each of the six measurement configurations. Analysis of the predictive model coefficients demonstrates that the canopy geometry has a significant influence on both the superposition and amplitude modulation. The universal signal, the signal that exists in the absence of any large-scale influence, is also modified as a result of local canopy geometry suggesting that although the nonlinear interactions within urban-type rough-wall boundary layers can be modelled using the predictive model as proposed by Mathis et al. (J. Fluid Mech., vol. 681, 2011, pp. 537–566), the model must be however calibrated for each type of canopy flow regime. The Reynolds number does not significantly affect any of the model coefficients, at least over the limited range of Reynolds numbers studied here. Finally, the predictive model is validated using a prediction of the near-canopy signal at a higher Reynolds number and a prediction using reference signals measured in different canopy geometries to run the model. Statistics up to the fourth order and spectra are accurately reproduced demonstrating the capability of the predictive model in an urban-type rough-wall boundary layer.


2020 ◽  
Vol 142 (6) ◽  
Author(s):  
Ramesh B. Kudenatti ◽  
Noor E. Misbah ◽  
M. C. Bharathi

Abstract This paper studies the linear stability of the unsteady boundary-layer flow and heat transfer over a moving wedge. Both mainstream flow outside the boundary layer and the wedge velocities are approximated by the power of the distance along the wedge wall. In a similar manner, the temperature of the wedge is approximated by the power of the distance that leads to a wall exponent temperature parameter. The governing boundary layer equations admit a class of self-similar solutions under these approximations. The Chebyshev collocation and shooting methods are utilized to predict the upper and lower branch solutions for various parameters. For these two solutions, the velocity, temperature profiles, wall shear-stress, and temperature gradient are entirely different and need to be assessed for their stability as to which of these solutions is practically realizable. It is shown that algebraically growing steady solutions do exist and their effects are significant in the unsteady context. The resulting eigenvalue problem determines whether or not the steady solutions are stable. There are interesting results that are linked to bypass an important class of boundary layer flow and heat transfer. The hydrodynamics behind these results are discussed in some detail.


1969 ◽  
Vol 91 (4) ◽  
pp. 632-648 ◽  
Author(s):  
T. K. Fannelop ◽  
P. C. Smith

A theoretical analysis is presented for three-dimensional laminar boundary-layer flow about slender conical vehicles including the effect of transverse surface curvature. The boundary-layer equations are solved by standard finite difference techniques. Numerical results are presented for hypersonic flow about a slender blunted cone. The influences of Reynolds number, cone angle, and mass transfer are studied for both symmetric flight and at angle-of-attack. The effects of transverse curvature are substantial at the low Reynolds numbers considered and are enhanced by blowing. The crossflow wall shear is largely unaffected by transverse curvature although the peak velocity is reduced. A simplified “channel flow” analogy is suggested for the crossflow near the wall.


Sign in / Sign up

Export Citation Format

Share Document