scholarly journals Thermal Influence on the Stiffness of Hybrid Metal-Composite Countersunk Bolted Joints

2021 ◽  
Vol 13 (4) ◽  
pp. 35-45
Author(s):  
Calin-Dumitru COMAN COMAN

This paper presents the effects of temperature on the axial stiffness of a hybrid metal-composite countersunk bolted joint designed for the bearing failure mode. A detailed 3D finite element model incorporating geometric, material and friction-based full contact nonlinearities is developed to numerically investigate the temperature effects on joint stiffness. In order to validate the temperature effects, experiments were conducted using an Instron testing machine coupled to a temperature controlled chamber. The results showed that the temperature effects on axial joint stiffness were quite accurately predicted by the 3D finite element model, denoting a reduction in the stiffness of the axial joint with an increase in temperature for hybrid metal-composite countersunk bolted joints.

2021 ◽  
Vol 62 ◽  
pp. 302-312
Author(s):  
Ninggang Shen ◽  
Avik Samanta ◽  
Wayne W. Cai ◽  
Teresa Rinker ◽  
Blair Carlson ◽  
...  

2011 ◽  
Vol 422 ◽  
pp. 51-54 ◽  
Author(s):  
Jian Hua Zhang ◽  
Ling Yu Sun ◽  
Xiao Jun Zhang ◽  
Jia Peng Li

The oil-immersed transformer tank is an outside package component of the transformer body. The sealing quality and mechanical strength of the oil tank are affected by the deformation after loading. In this paper, the 3D finite element model of oil-immersed transformer tank is established. The oil-immersed transformer tank deformation is obtained by FEA under the condition of vacuuming. A series of experiments about the deformation of the oil-immersed transformer tank are carried out. Comparing experiment results with FEA results, FEA results are agrees well with the experiments’. It can save the time consumed on designing the oil tank, and has the directive function for the whole design.


Transport ◽  
2007 ◽  
Vol 22 (1) ◽  
pp. 38-44 ◽  
Author(s):  
Andrejs Kovalovs ◽  
Evgeny Barkanov ◽  
Sergejs Gluhihs

The design methodology based on the planning of experiments and response surface technique has been developed for an optimum placement of Macro Fiber Composite (MFC) actuators in the helicopter rotor blades. The baseline helicopter rotor blade consists of D‐spar made of UD GFRP, skin made of +450/‐450 GFRP, foam core, MFC actuators placement on the skin and balance weight. 3D finite element model of the rotor blade has been built by ANSYS, where the rotor blade skin and spar “moustaches” are modeled by the linear layered structural shell elements SHELL99, and the spar and foam ‐ by 3D 20‐node structural solid elements SOLID 186. The thermal analyses of 3D finite element model have been developed to investigate an active twist of the helicopter rotor blade. Strain analogy between piezoelectric strains and thermally induced strains is used to model piezoelectric effects. The optimisation results have been obtained for design solutions, connected with the application of active materials, and checked by the finite element calculations.


2020 ◽  
Vol 102 (3) ◽  
pp. 1513-1520
Author(s):  
Jorge Rafael González-Teodoro ◽  
Enrique Romero-Cadaval ◽  
Rafael Asensi ◽  
Vladimir Kindl

Sign in / Sign up

Export Citation Format

Share Document