Spatio-Temporal Overlap between Local and Non-Local Reed WarblersAcrocephalus scirpaceusDuring the Autumn Migration Period

Ardeola ◽  
2015 ◽  
Vol 62 (2) ◽  
pp. 343-349 ◽  
Author(s):  
Nerea Pagaldai ◽  
Juan Arizaga
2019 ◽  
Vol 16 (154) ◽  
pp. 20190038 ◽  
Author(s):  
Yasmine Meroz ◽  
Renaud Bastien ◽  
L. Mahadevan

Tropisms, growth-driven responses to environmental stimuli, cause plant organs to respond in space and time and reorient themselves. Classical experiments from nearly a century ago reveal that plant shoots respond to the integrated history of light and gravity stimuli rather than just responding instantaneously. We introduce a temporally non-local response function for the dynamics of shoot growth formulated as an integro-differential equation whose solution allows us to qualitatively reproduce experimental observations associated with intermittent and unsteady stimuli. Furthermore, an analytic solution for the case of a pulse stimulus expresses the response function as a function of experimentally tractable variables, which we calculate for the case of the phototropic response of Arabidopsis hypocotyls. All together, our model enables us to predict tropic responses to time-varying stimuli, manifested in temporal integration phenomena, and sets the stage for the incorporation of additional effects such as multiple stimuli, gravitational sagging, etc.


Author(s):  
D. Nikitin ◽  
I. Omelchenko ◽  
A. Zakharova ◽  
M. Avetyan ◽  
A. L. Fradkov ◽  
...  

We study the spatio-temporal dynamics of a multiplex network of delay-coupled FitzHugh–Nagumo oscillators with non-local and fractal connectivities. Apart from chimera states, a new regime of coexistence of slow and fast oscillations is found. An analytical explanation for the emergence of such coexisting partial synchronization patterns is given. Furthermore, we propose a control scheme for the number of fast and slow neurons in each layer. This article is part of the theme issue ‘Nonlinear dynamics of delay systems’.


Author(s):  
Nuel Belnap ◽  
Thomas Müller ◽  
Tomasz Placek

This book develops a rigorous theory of indeterminism as a local and modal concept. Its crucial insight is that our world contains events or processes with alternative, really possible outcomes. The theory aims at clarifying what this assumption involves, and it does it in two ways. First, it provides a mathematically rigorous framework for local and modal indeterminism. Second, we support that theory by spelling out the philosophically relevant consequences of this formulation and by showing its fruitful applications in metaphysics. To this end, we offer a formal analysis of modal correlations and of causation, which is applicable in indeterministic and non-local contexts as well. We also propose a rigorous theory of objective single-case probabilities, intended to represent degrees of possibility. In a third step, we link our theory to current physics, investigating how local and modal indeterminism relates to issues in the foundations of physics, in particular, quantum non-locality and spatio-temporal relativity. The book also ventures into the philosophy of time, showing how the theory’s resources can be used to explicate the dynamic concept of the past, present, and future based on local indeterminism.


2019 ◽  
Author(s):  
Soheil Esmaeilzadeh ◽  
Amir Salehi ◽  
Gill Hetz ◽  
Feyisayo Olalotiti-lawal ◽  
Hamed Darabi ◽  
...  

Author(s):  
S. J. Thomson ◽  
M. Durey ◽  
R. R. Rosales

Recent experiments show that quasi-one-dimensional lattices of self-propelled droplets exhibit collective instabilities in the form of out-of-phase oscillations and solitary-like waves. This hydrodynamic lattice is driven by the external forcing of a vertically vibrating fluid bath, which invokes a field of subcritical Faraday waves on the bath surface, mediating the spatio-temporal droplet coupling. By modelling the droplet lattice as a memory-endowed system with spatially non-local coupling, we herein rationalize the form and onset of instability in this new class of dynamical oscillator. We identify the memory-driven instability of the lattice as a function of the number of droplets, and determine equispaced lattice configurations precluded by geometrical constraints. Each memory-driven instability is then classified as either a super- or subcritical Hopf bifurcation via a systematic weakly nonlinear analysis, rationalizing experimental observations. We further discover a previously unreported symmetry-breaking instability, manifest as an oscillatory–rotary motion of the lattice. Numerical simulations support our findings and prompt further investigations of this nonlinear dynamical system.


2013 ◽  
Vol 70 (3) ◽  
pp. 618-627 ◽  
Author(s):  
Morten Vinther ◽  
Margit Eero

Abstract Vinther, M., and Eero, M. 2013. Quantifying relative fishing impact on fish populations based on spatio-temporal overlap of fishing effort and stock density. – ICES Journal of Marine Science, 70: 618–627. Evaluations of the effects of management measures on fish populations are usually based on the analyses of population dynamics and estimates of fishing mortality from stock assessments. However, this approach may not be applicable in all cases, in particular for data-limited stocks, which may suffer from uncertain catch information and consequently lack reliable estimates of fishing mortality. In this study we develop an approach to obtain proxies for changes in fishing mortality based on effort information and predicted stock distribution. Cod in the Kattegat is used as an example. We use GAM analyses to predict local cod densities and combine this with spatio-temporal data of fishing effort based on VMS (Vessel Monitoring System). To quantify local fishing impact on the stock, retention probability of the gears is taken into account. The results indicate a substantial decline in the impact of the Danish demersal trawl fleet on cod in the Kattegat in recent years, due to a combination of closed areas, introduction of selective gears and changes in overall effort.


Sign in / Sign up

Export Citation Format

Share Document