scholarly journals Using Epoxy Resin as Partial Cement Replacement in Concrete with Silica Sand as Fine Aggregate

2021 ◽  
Vol 9 (5) ◽  
pp. 1513-1529
Author(s):  
Gul Ahmed Jokhio ◽  
Yasmeen Gul ◽  
Abid Abu-Tair
2019 ◽  
Vol 211 ◽  
pp. 659-674 ◽  
Author(s):  
L.M. Gil-Martín ◽  
A.E. Rodríguez-Suesca ◽  
M.A. Fernández-Ruiz ◽  
E. Hernández-Montes

Author(s):  
Zaidatul Syahida Adnan ◽  
Nur Farhayu Ariffin ◽  
Sharifah Maszura Syed Mohsin ◽  
Nor Hasanah Abdul Shukor Lim

Author(s):  
Kamil Krzywiński ◽  
Łukasz Sadowski ◽  
Damian Stefaniuk ◽  
Aleksei Obrosov ◽  
Sabine Weiß

AbstractNowadays, the recycled fine aggregate sourced from construction and demolition waste is not frequently used in manufacturing of epoxy resin coatings. Therefore, the main novelty of the article is to prepare green epoxy resin coatings modified with recycled fine aggregate in a replacement ratio of natural fine aggregate ranged from 20 to 100%. The microstructural properties of the aggregates and epoxy resin were analyzed using micro-computed tomography, scanning electron microscopy and nanoindentation. The macroscopic mechanical properties were examined using pull-off strength tests. The highest improvement of the mechanical properties was observed for epoxy resin coatings modified with 20% of natural fine aggregate and 80% of recycled fine aggregate. It has been found that even 100% of natural fine aggregate can be successfully replaced using the recycled fine aggregate with consequent improvement of the pull-off strength of analyzed epoxy resin coatings. In order to confirm the assumptions resulting from the conducted research, an original analytical and numerical failure model proved the superior behavior of modified coating was developed.


2018 ◽  
Vol 34 ◽  
pp. 01039
Author(s):  
Norsuzailina Mohamed Sutan ◽  
Nur Izaitul Akma Ideris ◽  
Siti Noor Linda Taib ◽  
Delsye Teo Ching Lee ◽  
Alsidqi Hassan ◽  
...  

Cement as an essential element for cement-based products contributed to negative environmental issues due to its high energy consumption and carbon dioxide emission during its production. These issues create the need to find alternative materials as partial cement replacement where studies on the potential of utilizing silica based materials as partial cement replacement come into picture. This review highlights the effectiveness of microstructural characterization techniques that have been used in the studies that focus on characterization of calcium hydroxide (CH) and calcium silicate hydrate (C-S-H) formation during hydration process of cement-based product incorporating nano reactive silica based materials as partial cement replacement. Understanding the effect of these materials as cement replacement in cement based product focusing on the microstructural development will lead to a higher confidence in the use of industrial waste as a new non-conventional material in construction industry that can catalyse rapid and innovative advances in green technology.


2015 ◽  
Vol 21 (3) ◽  
Author(s):  
Lenka Scheinherrová ◽  
Anton Trník ◽  
Tereza Kulovaná ◽  
Pavel Reiterman ◽  
Igor Medveď ◽  
...  

Materials ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 325 ◽  
Author(s):  
Yi-Feng Ling ◽  
Peng Zhang ◽  
Juan Wang ◽  
Yan Shi

Both finer sand and nanoparticles have a filler effect on mechanical performance of cement-based composite. In this paper, the influence of sand size in mechanical performance of cement-based composites, containing polyvinyl alcohol fiber (PVA) and nano-SiO2 (NS), was investigated. The studied mechanical performance, included compressive, flexural, tensile strength, and fracture toughness. A 0.9% volumetric percentage of PVA and a 2% NS mass content were used to make cement-based composites with a 0.38 w/b. Silica sand with four sand size ranges (380–830 μm, 212–380 μm, 120–212 μm and 75–120 μm) was adopted as fine aggregate. The 28-day curing was conducted for all specimens under 20 °C and 95% humidity. It is concluded that the finer sand decreased workability and mechanical strength of PVA-reinforced composites containing NS. However, this reduction was very limited for the sand particles less than 380 µm. The ultimate tensile stain, fracture toughness, and energy were decreased as sand size declined. In addition, the fracture performance of the composites was greatly dependent on fracture energy.


Sign in / Sign up

Export Citation Format

Share Document