scholarly journals Compressive Strength of Concrete containing Eggshell Powder as Partial Cement Replacement

2021 ◽  
Vol 682 (1) ◽  
pp. 012031
Author(s):  
S Mohd Arif ◽  
O Rokiah ◽  
M Khairunisa ◽  
B W Chong ◽  
Y C Chek ◽  
...  
2021 ◽  
Vol 879 ◽  
pp. 62-67
Author(s):  
Khairunisa Muthusamy ◽  
Rahimah Embong ◽  
Nabilla Mohamad ◽  
Nur Syahira Hanim Kamarul Bahrin ◽  
Fadzil Mat Yahaya

Environmental degradation caused by deforestation activities for harvesting of limestone from the hills and its calcination process at cement factory along with disposal of cockle shell waste from fisheries industries is in need of resolution. In view of sustainable green environment, approach of utilizing cockle shell waste as partial cement replacement in cement production would reduce pollution caused by both industries. Thus, this research investigates the effect of cockle shell powder as partial cement replacement on setting time and compressive strength of mortar. A total of five types of mortar mixes consisting different percentage of cockle shell powder as partial cement replacement from 0%, 10%, 20%, 30%, and 40% by weight of cement were prepared. Setting time test were conducted on fresh paste. All specimens were subjected to water curing until the testing age. Compressive strength test were conducted on hardened mortar cubes at 3, 7 and 28 days. Finding shows that integration of cockle shell powder as partial cement replacement influences the setting time and compressive strength of mortar. Suitable combination of 10% cockle shell powder successfully enhances the compressive strength of mortar. Conclusively, success in transforming the cockle shell waste to be used as partial cement replacement in mortar production able to reduce cement consumption, save landfill usage for trash dumping and promote cleaner environment for healthier lifestyle of community nearby.


2020 ◽  
Vol 402 ◽  
pp. 7-13
Author(s):  
Muttaqin Hasan ◽  
Aris Muyasir ◽  
Taufiq Saidi ◽  
Husaini ◽  
Raudha Azzahra

In this research, calcined diatomaceous earth from Aceh Besar, Indonesia was used as cement replacement in producing high strength concrete. Four concrete mixtures in which the percentage of cement replacement of 0%, 5%, 10% and 15% by weight were studied. Four cylinder-specimens with 100 mm diameter and 200 mm high were prepared for each mixture. The compression load was applied on the specimens at the age of 28 days until the specimens failed. The mixture without calcined diatomaceous earth was more workable than that with diatomaceous earth. The compressive strength of concrete with diatomaceous earth in this study was almost the same for all mixture. However, those compressive strength was lower than the compressive strength of concrete without calcined diatomaceous earth for about 14.6%. Modulus of elasticity of high strength concrete decreased with increasing of cement replacement percentage.


2021 ◽  
Vol 11 (3) ◽  
pp. 71-88
Author(s):  
Piseth Pok ◽  
Parnthep Julnipitawong ◽  
Somnuk Tangtermsirikul

This research investigated the effects of using a substandard fly ash as a partial cement and/or fine aggregate replacement on the basic and durability properties of cement-fly mixtures. Experimental results showed that utilizing the substandard fly ash led to increase in water requirement and autoclave expansion of pastes. The strength activity indexes of the substandard fly ash passed the requirements of TIS 2135 and ASTM C618. Utilization of the substandard fly ash as cement replacement led to higher expansion of mortar bars stored in water and sodium sulfate expansion as compared to that of the OPC mixture. However, sodium sulfate resistance of mortar mixtures improved when utilizing the substandard fly ash as sand replacement material. The compressive strength of concrete at all ages was higher with the increase of the content of the substandard fly ash as sand replacement material. When the substandard fly ash was used as cement replacement material in concrete, the carbonation depth increased. On the other hand, the use of the substandard fly ash as sand replacement material decreased the carbonation depth of the concrete. Utilization of the substandard fly ash, both to replace cement and/or fine aggregate, reduced the rapid chloride penetration of the concrete.


2021 ◽  
Vol 50 (2) ◽  
pp. 537-547
Author(s):  
Siong Kang Lim ◽  
Kar Poh Foo ◽  
Foo Wei Lee ◽  
Hock Yong Tiong ◽  
Yee Ling Lee ◽  
...  

Nowadays, almost every industry needs to undergo green and sustainable industrial revolution due to pollutions like waste dumping and noise that deteriorating the environment. Therefore, feasibility study on application of eggshell waste as partial cement replacement in lightweight foamed concrete was conducted by aiming to solve environmental and acoustical issues, i.e. reduce eggshell waste and improve acoustic properties. In this study, compressive strength and acoustic properties of 1300 kg m-3 lightweight foamed concrete with and without 5% eggshell powder as partial cement replacement material were tested. Optimal water to cement ratio of 0.6 was obtained for acoustic properties test by comparing compressive strength result. The result shows that application eggshell powder has generally reduced 7 days compressive strength but improved 28 days compressive strength, and either improve or maintain acoustics properties, in which lightweight foamed concrete that containing eggshell powder has improved noise reduction coefficient at testing ages of 7, 28, and 90 days and improved sound transmission class at testing age of 56 and 90 days. Based on these results, 5% of eggshell powder is feasible to be incorporated into lightweight foamed concrete as partial cement replacement material for sound insulation and strength development purposes.


2018 ◽  
Vol 15 (1) ◽  
pp. 11-16
Author(s):  
Fauna Adibroto ◽  
Etri Suhelmidawati ◽  
Azri Azhar Musaddiq Zade

Various research in concrete sector has been done as an effort to increase quality of concrete, materials and method, materials technology and implementation techniques obtained from the results of the experiments and experiments are intended to answer the increasing demands on the use of concrete and overcome the constraints that often occur in the implementation of work in the field. One way to increase the strength of concrete is to use a cement replacement that is fly ash.The purpose of this research is to know the influence of partial cement replacement effect with fly ash to the concrete compressive strength, in order to be applicated for rigid pavement in road design. The variations of composition in the addition of fly ash is 0%, 10%, 12.5%, 15%, 20% and 25% of the weight of cement. Concrete compressive strength is 40 MPa and tested at 7 days and 28 days. This research tested concrete with cylinder test object (diameter 150 mm and height 300 mm) with 30 sample and consist of 6 variation. From this research, optimum compressive strength at 10% variation is 30,770 MPa. The lowest compressive strength is in the 25% variation with 20,046 MPa.The highest compressive strength obtained from the research is 30.770 Mpa.


2016 ◽  
Vol 857 ◽  
pp. 36-40 ◽  
Author(s):  
Kumar S. Rajesh ◽  
Amiya K. Samanta ◽  
Dilip K. Singha Roy

This investigation is focused on the physical and mechanical properties of Alccofine (AF) incorporating silica fume (SF) on M20 grade concrete. Normally, these industrial wastes (SF) are disposed off in landfill. The use of these industrial waste in concrete could reduce waste in the environment as well helps the environment against pollution as it is known that one ton of cement manufacture released one ton of carbon dioxide to the environment .Alccofine is a new replacement material on which very limited research has been done, its effect with flyash has been studied. The current study is a new experimental research undertaken to study the effect of alccofine on SF based concrete. Alccofine was varied in percentages of 0, 5, 10 and 15%, Silica fume was varied in percentages of 0, 5, 10, 15 % The aim of the investigation was to see the effect of alccofine on compressive strength of concrete and do a comparison on 7, and 28 days strength.The results showed that the cement replacement by 10% of alccofine gives higher values when compared with all other mix. The cement replacement by 10% alccofine gave a good improvement in compressive strength. Alccofine has the better performance when compare to the other slag material. It is helpful to make concrete workable


2014 ◽  
Vol 982 ◽  
pp. 22-26 ◽  
Author(s):  
Tereza Kulovaná ◽  
Pavla Rovnaníková ◽  
Zbyšek Pavlík ◽  
Robert Černý

Effect of porosity on mechanical and hygric properties of high performance concrete (HPC) with natural pozzolan as partial Portland cement replacement up to 40% is studied in the paper. The reference HPC mixture is researched as well in order to evaluate the influence of pozzolan usage on concrete performance. For the studied materials, measurement of compressive strength, sorptivity, apparent moisture diffusivity, and water vapor diffusion permeability is done. The obtained data shows that application of the pozzolan as partial cement replacement leads to increase of concrete porosity that is related to the lower mechanical strength and higher moisture transport properties. Therefore, the applied natural pozzolan has a potential to replace a part of Portland cement in concrete manufacturing but its content in concrete mixture has strict limitations.


Sign in / Sign up

Export Citation Format

Share Document