A Computer Program for Semiquantitative Mineral Analysis by X-Ray Powder Diffraction

2015 ◽  
pp. 37-50
Author(s):  
John W. Hosterman ◽  
Frank T. Dulong
2003 ◽  
Vol 18 (1) ◽  
pp. 32-35 ◽  
Author(s):  
Yanan Xiao ◽  
Fujio Izumi ◽  
Timothy Graber ◽  
P. James Viccaro ◽  
Dale E. Wittmer

A computer program for refining anomalous scattering factors using x-ray powder diffraction data was revised on the basis of the latest version of a versatile pattern-fitting system, RIETAN-2000. The effectiveness of the resulting program was confirmed by applying it to simulated and measured powder-diffraction patterns of Mn3O4 taken at a synchrotron light source.


1973 ◽  
Vol 17 ◽  
pp. 20-31
Author(s):  
Howard F. McMurdie

AbstractThe identification of crystalline phases by x-ray diffraction, either by powder or single crystal techniques requires a dependable body of reference data. It is not only necessary to have data on each phase which are accurate and complete, it also is desirable to have data on as wide a range of compounds as possible, and to have the data organized in such a manner as to be readily usable. The outstanding compilations which approach these goals are the Powder Diffraction File and Crystal Data.The Powder Diffraction File, published by the Joint Committee on Powder Diffraction Standards has data covering about 22,500 phases, both organic and inorganic. These data are of various degrees of accuracy as is indicated by symbols. The File is continuously being improved by the addition of evaluated data from the general literature and by data produced by supporting projects, the principal one being the Joint Committee Associateship at the National Bureau of Standards.To be noted in the File with a star, and to be truly considered standard data a powder pattern must be complete in the sense of including all reflections above the minimum “d” spacing covered, both weak lines and those with large “d” spacings. Since the best test of a pattern is its own internal consistency, the reflections must all have hkl's assigned and must show a good agreement between the spacings observed and those calculated from a refined cell, and they must be consistent with the known space group. This agreement can be best obtained by the use of an internal standard and a computer program. The intensities should be measured by a method which minimizes the effect of crystal orientation.The PDF is provided with search procedure manuals arranged on a scheme of the strongest lines to help in locating data matching that from an unknovm. A computer program for rapid searching is available. A recent development is the inclusion of a “reference intensity” to aid in estimating the quantitative analysis of mixtures.Crystal Data is a compilation now in the third edition made at the National Bureau of Standards and published by the Joint Committee on Powder Diffraction Standards. It contains data on the unit cell parameters of over 24,000 phases. These data are arranged by crystal system and axial ratios to simplify identification of phases from unit cell data obtained from Single crystal cameras.Both of these large compilations are also important reference sources for crystallographic information giving structural information and literature references.


1987 ◽  
Vol 2 (3) ◽  
pp. 137-145 ◽  
Author(s):  
K. E. Wiedemann ◽  
J. Unnam ◽  
R. K. Clark

AbstractA program is presented that removes broadening from X-ray diffraction spectra. An instrumental spectrum can be used to describe empirically the broadening to be removed, or a Gaussian, Cauchy, or Pearson-VII distribution can be used to analytically describe it. In either case, singlet or doublet forms can be generated. The program returns the deconvoluted spectrum, the reconstructed spectrum, and a sum-of-squares difference between the original and reconstructed spectra. Deconvolution is accomplished using a combination of least-squares, background, and smoothing criteria that minimizes the effect of random counting errors.


1983 ◽  
Vol 16 (6) ◽  
pp. 651-653 ◽  
Author(s):  
E. R. Hovestreydt

A computer program is described, whose purpose is the refinement of cell parameters from X-ray or neutron diffraction data. It is of particular use when working with powder diffraction patterns, as it has the possibility of (a) correcting the measured diffraction angles from reference reflections and of (b) calculating a theoretical powder diffractogram, including intensities. A minimum of crystallographic information has to be given and input is partially in free format. E.s.d.'s in cell parameters, as well as in the volume, are calculated. It handles α 1−α 2 splitting and calculates, apart from the theoretical line positions, also a more realistic position of where to expect a given reflection on the film.


2010 ◽  
Vol 43 (2) ◽  
pp. 370-376 ◽  
Author(s):  
Silvina Pagola ◽  
Peter W. Stephens

This work describes the computer programPSSP(powder structure solution program) for the crystal structure solution of molecular solids from X-ray powder diffraction data. This direct-space structure solution program uses the simulated annealing global optimization algorithm to minimize the difference between integrated intensities calculated from trial models and those extracted in a Le Bail fit of the experimental pattern, using a cost function for dealing with peak overlap through defined intensity correlation coefficients, computationally faster to calculate thanRwp. The methodology outlined is applicable to organic solids composed of moderately complex rigid and flexible molecules, using diffraction data up to relatively low resolution.PSSPperformance tests using 11 molecular solids with six to 20 degrees of freedom are analyzed.


Sign in / Sign up

Export Citation Format

Share Document