Differences in Uptake of Low-Dose CT Scan for Lung Cancer among White and Black Adult Smokers in the United States—2017

2021 ◽  
Vol 32 (1) ◽  
pp. 165-178
Author(s):  
Hermine Poghosyan ◽  
Daniel Fortin ◽  
Erika L. Moen ◽  
Karen S. Quigley ◽  
Gary J. Young
Lung ◽  
2012 ◽  
Vol 190 (6) ◽  
pp. 621-628 ◽  
Author(s):  
M. Pallin ◽  
S. Walsh ◽  
M. F. O’Driscoll ◽  
C. Murray ◽  
A. Cahalane ◽  
...  

Author(s):  
Olivier Leleu ◽  
Damien Basille ◽  
Marianne Auquier ◽  
Caroline Clarot ◽  
Estelle Hoguet ◽  
...  

SpringerPlus ◽  
2013 ◽  
Vol 2 (1) ◽  
Author(s):  
Koji Ono ◽  
Toru Hiraoka ◽  
Asami Ono ◽  
Eiji Komatsu ◽  
Takehiko Shigenaga ◽  
...  

2019 ◽  
Vol 37 (15_suppl) ◽  
pp. 6567-6567
Author(s):  
Derek Raghavan ◽  
Darcy L Doege ◽  
Mellisa S Wheeler ◽  
John D Doty ◽  
James Oliver ◽  
...  

6567 Background: The National Lung Screening Trial (NLST) demonstrated that screening high-risk patients with low-dose CT (LDCT) of the chest reduces lung cancer mortality compared to screening with chest x-ray. Uninsured and Medicaid patients lack access to this hospital-based screening test due to geographic isolation/socio-economic factors. We hypothesized that a mobile screening unit would improve access and confer benefits demonstrated by the NLST to this under-served group, which is most at risk of lung cancer deaths. Methods: In collaboration with Samsung Inc, we inserted a BodyTom portable 32 slide low-dose CT scanner into a 35-foot coach, reinforced to avoid equipment damage, to function as a mobile lung scanning unit. The unit includes a waiting area, high speed wireless internet connection for rapid image transfer, and electronic tablets to deliver smoking cessation and health education programs and shared decision-making video aids. It has been certified as a lung cancer screening Center of Excellence by Lung Cancer Alliance. We employed the LUNG RADS approach to lesion classification, yielding high sensitivity and specificity in assessment. All films were reviewed by a central panel of oncologists, pulmonologists and radiologists. The protocol was approved by Chesapeake IRB, which oversees all LCI cancer trials. Interim analysis at this time was approved by the Oversight Committee. Results: We screened 470 under-served smokers between 4/2017-1/2019; M:F 1.1:1, mean age 61 years (range 55-64), with average pack year history of 45.7 (30-150) (25% African-American; 3% Hispanic; 65% rural; 100% uninsured, under-insured or Medicaid - NC Medicaid does not cover lung cancer screening). Patients over the age of 64 years were excluded as they are covered by Medicare for lung cancer screening. We found at initial screen 35 subjects with LUNG RADS 4 lesions, 49 subjects with LUNG RADS 3 lesions, 10 lung cancers (2.1%), including 4 at stage I-II. 4 non-lung cancers were identified and treated. Other incidental non-oncologic findings are the subject of another presentation. Conclusions: In this small sample using the first mobile low dose CT lung screening unit in the United States, the initial cancer detection rate is comparable to that reported in the NLST but with marked improvement of screening rates in underserved groups and with better anticipated outcomes at lower cost than if they had first presented with metastatic disease.


Author(s):  
Stacey A Fedewa ◽  
Ella A Kazerooni ◽  
Jamie L Studts ◽  
Robert A Smith ◽  
Priti Bandi ◽  
...  

Abstract Background Annual lung cancer screening (LCS) with low-dose chest computed tomography in older current and former smokers (ie, eligible adults) has been recommended since 2013. Uptake has been slow and variable across the United States. We estimated the LCS rate and growth at the national and state level between 2016 and 2018. Methods The American College of Radiology’s Lung Cancer Screening Registry was used to capture screening events. Population-based surveys, the US Census, and cancer registry data were used to estimate the number of eligible adults and lung cancer mortality (ie, burden). Lung cancer screening rates (SRs) in eligible adults and screening rate ratios with 95% confidence intervals (CI) were used to measure changes by state and year. Results Nationally, the SR was steady between 2016 (3.3%, 95% CI = 3.3% to 3.7%) and 2017 (3.4%, 95% CI = 3.4% to 3.9%), increasing to 5.0% (95% CI = 5.0% to 5.7%) in 2018 (2018 vs 2016 SR ratio = 1.52, 95% CI = 1.51 to 1.62). In 2018, several southern states with a high lung-cancer burden (eg, Mississippi, West Virginia, and Arkansas) had relatively low SRs (<4%) among eligible adults, whereas several northeastern states with lower lung cancer burden (eg, Massachusetts, Vermont, and New Hampshire) had the highest SRs (12.8%-15.2%). The exception was Kentucky, which had the nation’s highest lung cancer mortality rate and one of the highest SRs (13.7%). Conclusions Fewer than 1 in 20 eligible adults received LCS nationally, and uptake varied widely across states. LCS rates were not aligned with lung cancer burden across states, except for Kentucky, which has supported comprehensive efforts to implement LCS.


Sign in / Sign up

Export Citation Format

Share Document