scholarly journals Prostaglandin E2-Mediated Anabolic Effect of a Novel Inhibitor of Phosphodiesterase 4, XT-611, in the In Vitro Bone Marrow Culture

2003 ◽  
Vol 18 (8) ◽  
pp. 1471-1477 ◽  
Author(s):  
Ken-Ichi Miyamoto ◽  
Hirokazu Suzuki ◽  
Shinya Yamamoto ◽  
Yukie Saitoh ◽  
Eiji Ochiai ◽  
...  
1962 ◽  
Vol 203 (4) ◽  
pp. 693-696 ◽  
Author(s):  
Thomas F. Necheles

Myeloid marrow was rapidly removed from femurs of fasting young rabbits, sectioned, and incubated in Krebs-bicarbonate-CO2-oxygen buffer with appropriate C14-labeled precursors. All manipulations were designed to preserve the architecture of the tissue. After 1 hr the protein or nucleic acid-adenine was isolated and purified. Insulin, 0.01 U/ml added in vitro, stimulated histidine-2(ring)-C14 incorporation into protein by 26 ± 1.4%; alkali-treated insulin was inactive. Thyroxin elicited a 49.4 ± 2.1% stimulation at an optimum concentration of 10–7 m. Triiodothyronine, but not diiodothyronine, also had a significant effect. Insulin increased incorporation of carbon from adenosine-8-C14 into adenine of ribonucleic acid and deoxyribonucleic acid. Thyroxin, on the other hand, was without consistent effect on this process. Thyroxin stimulated significantly the incorporation of C14 of glycine-2-C14 into adenine. The possibility that part of the anabolic effect of thyroxin on bone marrow may arise from a stimulus to incorporation of precursors into purines is suggested.


2009 ◽  
Vol 20 (3) ◽  
pp. 280-286 ◽  
Author(s):  
A. Faille ◽  
C. Dresch ◽  
O. Poirier ◽  
N. Balitrand ◽  
Y. Najean

Bone ◽  
2013 ◽  
Vol 56 (1) ◽  
pp. 31-41 ◽  
Author(s):  
Shilpa Choudhary ◽  
Katherine Blackwell ◽  
Olga Voznesensky ◽  
Abhijit Deb Roy ◽  
Carol Pilbeam

Blood ◽  
2012 ◽  
Vol 119 (10) ◽  
pp. 2358-2367 ◽  
Author(s):  
Zbigniew Zasłona ◽  
Carlos H. Serezani ◽  
Katsuhide Okunishi ◽  
David M. Aronoff ◽  
Marc Peters-Golden

Abstract Prostaglandin E2 (PGE2) is a lipid mediator that acts by ligating 4 distinct G protein–coupled receptors, E prostanoid (EP) 1 to 4. Previous studies identified the importance of PGE2 in regulating macrophage functions, but little is known about its effect on macrophage maturation. Macrophage maturation was studied in vitro in bone marrow cell cultures, and in vivo in a model of peritonitis. EP2 was the most abundant PGE2 receptor expressed by bone marrow cells, and its expression further increased during macrophage maturation. EP2-deficient (EP2−/−) macrophages exhibited enhanced in vitro maturation compared with wild-type cells, as evidenced by higher F4/80 expression. An EP2 antagonist also increased maturation. In the peritonitis model, EP2−/− mice exhibited a higher percentage of F4/80high/CD11bhigh cells and greater expression of macrophage colony-stimulating factor receptor (M-CSFR) in both the blood and the peritoneal cavity. Subcutaneous injection of the PGE2 analog misoprostol decreased M-CSFR expression in bone marrow cells and reduced the number of peritoneal macrophages in wild-type mice but not EP2−/− mice. The suppressive effect of EP2 ligation on in vitro macrophage maturation was mimicked by a selective protein kinase A agonist. Our findings reveal a novel role for PGE2/EP2/protein kinase A signaling in the suppression of macrophage maturation.


Blood ◽  
1981 ◽  
Vol 58 (4) ◽  
pp. 724-732 ◽  
Author(s):  
HM Greenberg ◽  
PE Newburger ◽  
LM Parker ◽  
T Novak ◽  
JS Greenberger

Abstract A long-term bone marrow culture system has been derived for maintenance and proliferation of human hemopoietic stem cells and granulocytes in vitro for up to 20 wk. The granulocytes generated in these cultures at 8 wk were comparable to fresh human peripheral blood granulocytes in physiologic properties, including phagocytosis, degranulation, respiratory burst, and bacterial killing: individual granulocytes generated up to 20 wk in several cultures demonstrated normal superoxide-generating capacity by NBT dye reduction slide test. Thus, human granulocytes generated in continuous marrow culture retain many biologic functions associated with bacterocidal capacity in vivo and indicate that this system should be of value in studies of disorders of granulocyte differentiation.


2001 ◽  
Vol 168 (1) ◽  
pp. 131-139 ◽  
Author(s):  
S Keila ◽  
A Kelner ◽  
M Weinreb

Prostaglandin E(2) (PGE(2)) has been shown to exert a bone anabolic effect in young and adult rats. In this study we tested whether it possesses a similar effect on bone formation and bone mass in aging rats. Fifteen-month-old rats were injected daily with either PGE(2) at 5 mg/kg or vehicle for 14 days. PGE(2) treatment stimulated the rate of cancellous bone formation (a approximately 5.5-fold increase in bone formation rate), measured by the incorporation of calcein into bone-forming surfaces at the tibial proximal metaphysis. This effect resulted in increased cancellous bone area (+54%) at the same site. Since PGE(2) treatment resulted in a much higher proportion of bone surface undergoing bone formation and thus lined with osteoblasts, we tested the hypothesis that PGE(2) stimulates osteoblast differentiation from bone marrow precursor cells both in vivo and in vitro. We found that ex vivo cultures of bone marrow stromal cells from rats injected for 2 weeks with PGE(2) at 5 mg/kg per day yielded more ( approximately 4-fold) mineralized nodules and exhibited a greater (by 30-40%) alkaline phosphatase activity compared with cultures from vehicle-injected rats, attesting to a stimulation of osteoblastic differentiation by PGE(2). We also compared the osteogenic capacity of bone marrow from aging (15-month-old) versus young (5-week-old) rats and its regulation by PGE(2) in vitro. Bone marrow stromal cell cultures from aging rats exhibited a greatly diminished osteogenic capacity, reflected in reduced nodule formation ( approximately 6% of young animals) and lower alkaline phosphatase activity ( approximately 60% of young animals). However, these parameters could be stimulated in both groups of animals by incubation with 10-100 nM PGE(2). The magnitude of this stimulation was greater in cultures from aging rats (+550% vs +70% in nodule formation of aging compared with young rats). In conclusion, we demonstrate here that PGE(2) exerts a bone anabolic effect in aging rats, similar to the effect we and others have reported in young, growing rats. The PGE(2)-stimulated bone formation, which augments bone mass, most likely results from recruitment of osteoblasts from their bone marrow stromal precursors.


1987 ◽  
Vol 25 (1) ◽  
pp. 43-53 ◽  
Author(s):  
Daniel J. Weisdorf ◽  
Robert T. Perri ◽  
Martin M. Oken ◽  
Wesley J. Miller ◽  
Diane C. Arthur ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document