The correlation of flare?s location on solar disc and the sudden increase of total electron content

2002 ◽  
Vol 47 (1) ◽  
pp. 82 ◽  
Author(s):  
Donghe ZHANG
Space Weather ◽  
2015 ◽  
Vol 13 (10) ◽  
pp. 698-708 ◽  
Author(s):  
I. Rodríguez-Bilbao ◽  
S. M. Radicella ◽  
G. Rodríguez-Caderot ◽  
M. Herraiz

Author(s):  
Baatarkhuu Dagva ◽  
Amarjargal Sharav ◽  
Lkhagvajav Chultemiin

This work is focused on the correlation of ionosphere total electron content (TEC) with solar and geomagnetic activities of the space weather at mid-latitude zone.  In our analysis, we investigate the TEC time series obtained from dual-frequency GNSS (Global Navigation Satellite System) observations at three continuous GPS/GNSS stations HOVD (48.00N, 91.66E), CHOB (48.08N, 114.53E) and DALN (43.56N, 104.42) for 2013. The statistical analyses are performed on 15 minute averaged yearly TEC values, which reveal the semi-annual anomaly and high correlation with the activities of the Sun and the rotation of the Earth. Phase overlapping seasonal variations of TEC and Sunspot, and Solar flux (10.7) indices, and Earth rotations (LOD) and Atmospheric angular moment (AAM) are observed in our data analyses. Sudden ionospheric storm changes in TEC with geomagnetic storm induced by the extreme solar flare and 2013 events were investigated. The result shows that GPS derived TEC behaves as an indicator of these events showing sudden increase in TEC during the event.


2013 ◽  
Vol 6 (1) ◽  
pp. 43-49 ◽  
Author(s):  
P. K. Purohit ◽  
A. A. Mansoori ◽  
P. A. Khan ◽  
P. Bhawre ◽  
S. C. Tripathi ◽  
...  

We have investigated the response of ionosphere to major solar flare events that occurred during 1998 to 2011. The effect of enhanced radiation fluxes in the X-ray and EUV band on the GPS derived Total Electron Content (TEC) is examined. The data of X-ray flux from Geostationary Operational Environment Satellite (GOES) and EUV flux from Solar EUV Monitor (SEM) onboard SOHO spacecraft were correlated with the Total Electron Content (TEC) data of a high latitude station, Davis (68.570S, 77.960E). We found that peak intensities of X-ray and EUV flux correlate very well with the peak values of TEC. We also studied the correlation of peak enhancement of these fluxes with the peak enhancement of TEC and found that peak enhancement of these fluxes correlate highly with the peak enhancement of TEC than with the peak values themselves. It is also found that correlation is extraordinarily improved when these fluxes are multiplied by Cos(CMD) where CMD is Central Meridian Distance on the solar disc, thereby showing that the location of flares on the solar disc plays an important role while investigating the ionospheric influences of solar flares.  Keywords: Ionosphere; TEC; CMD; Solar Flare. © 2014 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved. doi: http://dx.doi.org/10.3329/jsr.v6i1.14100 J. Sci. Res. 6 (1), 43-49 (2014)


Sign in / Sign up

Export Citation Format

Share Document