scholarly journals Some statistics of Ionospheric total electron content variations at mid-latitude zones of Mongolia

Author(s):  
Baatarkhuu Dagva ◽  
Amarjargal Sharav ◽  
Lkhagvajav Chultemiin

This work is focused on the correlation of ionosphere total electron content (TEC) with solar and geomagnetic activities of the space weather at mid-latitude zone.  In our analysis, we investigate the TEC time series obtained from dual-frequency GNSS (Global Navigation Satellite System) observations at three continuous GPS/GNSS stations HOVD (48.00N, 91.66E), CHOB (48.08N, 114.53E) and DALN (43.56N, 104.42) for 2013. The statistical analyses are performed on 15 minute averaged yearly TEC values, which reveal the semi-annual anomaly and high correlation with the activities of the Sun and the rotation of the Earth. Phase overlapping seasonal variations of TEC and Sunspot, and Solar flux (10.7) indices, and Earth rotations (LOD) and Atmospheric angular moment (AAM) are observed in our data analyses. Sudden ionospheric storm changes in TEC with geomagnetic storm induced by the extreme solar flare and 2013 events were investigated. The result shows that GPS derived TEC behaves as an indicator of these events showing sudden increase in TEC during the event.

2021 ◽  
Vol 3 (7) ◽  
Author(s):  
Omid Memarian Sorkhabi

AbstractOne of the most notable errors in the global navigation satellite system (GNSS) is the ionospheric delay due to the total electron content (TEC). TEC is the number of electrons in the ionosphere in the signal path from the satellite to the receiver, which fluctuates with time and location. This error is one of the major problems in single-frequency (SF) GPS receivers. One way to eliminate this error is to use dual-frequency. Users of SF receivers should either use estimation models or local models to reduce this error. In this study, deep learning of artificial neural networks (ANN) was used to estimate TEC for SF users. For this purpose, the ionosphere as a single-layer model (assuming that all free electrons in the ionosphere are in this thin layer) is locally modeled by the code observation method. Linear combination has been used by selecting 24 permanent GNSS stations in the northwest of Iran. TEC was modeled independently of the geometry between the satellite and the receiver, called L4. This modeling was used to train the error ANN with two 5-day periods of high and low solar and geomagnetic activity range with a hyperbolic tangential sigmoid activation function. The results show that the proposed method is capable of eliminating ionosphere error with an average accuracy of 90%. The international reference ionosphere 2016 (IRI2016) is used for the verification, which has a 96% significance correlation with estimated TEC.


2021 ◽  
Vol 13 (19) ◽  
pp. 3973
Author(s):  
Artem M. Padokhin ◽  
Anna A. Mylnikova ◽  
Yury V. Yasyukevich ◽  
Yury V. Morozov ◽  
Gregory A. Kurbatov ◽  
...  

Global navigation satellite system signals are known to be an efficient tool to monitor the Earth ionosphere. We suggest Galileo E5 AltBOC phase and pseudorange observables— a single-frequency combination—to estimate the ionospheric total electron content (TEC). We performed a one-month campaign in September 2020 to compare the noise level for different TEC estimations based on single-frequency and dual-frequency data. Unlike GPS, GLONASS, or Galileo E5a and E5b single-frequency TEC estimations (involving signals with binary and quadrature phase-shift keying, such as BPSK and QPSK, or binary offset carrier (BOC) modulation), an extra wideband Galileo E5 AltBOC signal provided the smallest noise level, comparable to that of dual-frequency GPS. For elevation higher than 60 degrees, the 100-sec root-mean-square (RMS) of TEC, an estimated TEC noise proxy, was as follows for different signals: ~0.05 TECU for Galileo E5 AltBOC, 0.09 TECU for GPS L5, ~0.1TECU for Galileo E5a/E5b BPSK, and 0.85 TECU for Galileo E1 CBOC. Dual-frequency phase combinations provided RMS values of 0.03 TECU for Galileo E1/E5, 0.03 and 0.07 TECU for GPS L1/L2 and L1/L5. At low elevations, E5 AltBOC provided at least twice less single-frequency TEC noise as compared with data obtained from E5a or E5b. The short dataset of our study could limit the obtained estimates; however, we expect that the AltBOC single-frequency TEC will still surpass the BPSK analogue in noise parameters when the solar cycle evolves and geomagnetic activity increases. Therefore, AltBOC signals could advance geoscience.


2019 ◽  
Vol 30 ◽  
pp. 15007
Author(s):  
George Minasyan ◽  
Ivan Nesterov ◽  
Yaroslav Ilyushin

Based on the analysis of the phase data of the global navigation satellite system, distributions of time derivatives of the L1 phase frequency and the total electronic content are obtained. The change in the distributions of observed statistics of time derivatives of the total electron content was analyzed, because there are cycle slips in signals of navigation satellites. According to the analysis of the statistics of the phase of signals, an assumption about the physical and technical reasons for phase failures was made. The correlation between time derivatives of the phase signals and the total electron content has been obtained, despite the apparent dependence of the latter on the phase of the signal. This ratio showed that neither direct nor inverse dependence of the change in the distribution of time derivatives in both of quantities was found.


2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Takashi Maruyama ◽  
Kornyanat Hozumi ◽  
Guanyi Ma ◽  
Pornchai Supnithi ◽  
Napat Tongkasem ◽  
...  

AbstractA new technique was developed to estimate the ionospheric total electron content (TEC) from Global Navigation Satellite System (GNSS) satellite signals. The vertically distributed electron density was parameterized by two thin-shell layers (double-shell approach). The spatiotemporal variation of TEC (strictly speaking, partial electron content) associated with each shell was approximated by the functional fitting of spherical surface harmonics. The major improvements over the conventional single-shell approach were as follows: (1) the precise estimation of TEC was achieved; (2) the estimated TEC was less dependent on the choice of shell heights; and (3) the equatorial anomaly was captured more correctly. Furthermore, higher and lower shells exhibited a different pattern of local time vs latitude variation, providing information on the ionosphere–thermosphere dynamics.


2020 ◽  
Author(s):  
Takashi Maruyama ◽  
Kornyanat Hozumi ◽  
Guanyi Ma ◽  
Pornchai Supnithi ◽  
Qingtao Wan

Abstract A new technique was developed to estimate the ionospheric total electron content (TEC) from Global Navigation Satellite System (GNSS) satellite signals. The vertically distributed electron density was parameterized by two thin-shell layers (double-shell approach). The spatiotemporal variation of TEC (strictly speaking, partial electron content) associated with each shell was approximated by the functional fitting of spherical surface harmonics. The major improvements over the conventional single-shell approach were as follows: (1) the precise estimation of TEC was achieved; (2) the estimated TEC was less dependent on the choice of shell height; and (3) the equatorial anomaly was captured more correctly. Furthermore, higher and lower shells exhibited a different pattern of local time vs latitude variation, providing information on the ionosphere--thermosphere dynamics.


2020 ◽  
Vol 38 (2) ◽  
pp. 347-357 ◽  
Author(s):  
Telmo dos Santos Klipp ◽  
Adriano Petry ◽  
Jonas Rodrigues de Souza ◽  
Eurico Rodrigues de Paula ◽  
Gabriel Sandim Falcão ◽  
...  

Abstract. In this work, a period of 2 years (2016–2017) of ionospheric total electron content (ITEC) from ionosondes operating in Brazil is compared to the International GNSS (Global Navigation Satellite System) Service (IGS) vertical total electron content (vTEC) data. Sounding instruments from the National Institute for Space Research (INPE) provided the ionograms used, which were filtered based on confidence score (CS) and C-Level flag evaluation. Differences between vTEC from IGS maps and ionosonde TEC were accumulated in terms of root mean squared error (RMSE). As expected, we noticed that the ITEC values provided by ionosondes are systematically underestimated, which is attributed to a limitation in the electron density modeling for the ionogram topside that considers a fixed scale height, which makes density values decay too rapidly above ∼800 km, while IGS takes in account electron density from GNSS stations up to the satellite network orbits. The topside density profiles covering the plasmasphere were re-modeled using two different approaches: an optimization of the adapted α-Chapman exponential decay that includes a transition function between the F2 layer and plasmasphere and a corrected version of the NeQuick topside formulation. The electron density integration height was extended to 20 000 km to compute TEC. Chapman parameters for the F2 layer were extracted from each ionogram, and the plasmaspheric scale height was set to 10 000 km. A criterion to optimize the proportionality coefficient used to calculate the plasmaspheric basis density was introduced in this work. The NeQuick variable scale height was calculated using empirical parameters determined with data from Swarm satellites. The mean RMSE for the whole period using adapted α-Chapman optimization reached a minimum of 5.32 TECU, that is, 23 % lower than initial ITEC errors, while for the NeQuick topside formulation the error was reduced by 27 %.


2012 ◽  
Vol 8 (S288) ◽  
pp. 322-325 ◽  
Author(s):  
Rui Jin ◽  
Shuanggen Jin

AbstractThe total electron content (TEC) is an important parameters in the Earth's ionosphere, related to various space weather and solar activities. However, understanding of the complex ionospheric environments is still a challenge due to the lack of direct observations, particularly in the polar areas, e.g., Antarctica. Now the Global Positioning System (GPS) can be used to retrieve total electron content (TEC) from dual-frequency observations. The continuous GPS observations in Antarctica provide a good opportunity to investigate ionospheric climatology. In this paper, the long-term variations and fluctuations of TEC over Antarctica are investigated from CODE global ionospheric maps (GIM) with a resolution of 2.5°×5° every two hours since 1998. The analysis shows significant seasonal and secular variations in the GPS TEC. Furthermore, the effects of TEC fluctuations are discussed.


2021 ◽  
Vol 13 (16) ◽  
pp. 3290
Author(s):  
Claudio Cesaroni ◽  
Luca Spogli ◽  
Giorgiana De Franceschi

IONORING (IONOspheric RING) is a tool capable to provide the real-time monitoring and modeling of the ionospheric Total Electron Content (TEC) over Italy, in the latitudinal and longitudinal ranges of 35°N-48°N and 5°E-20°E, respectively. IONORING exploits the Global Navigation Satellite System (GNSS) data acquired by the RING (Rete Integrata Nazionale GNSS) network, managed by the Istituto Nazionale di Geofisica e Vulcanologia (INGV). The system provides TEC real-time maps with a very fine spatial resolution (0.1° latitude x 0.1° longitude), with a refresh time of 10 min and a typical latency below the minute. The TEC estimated at the ionospheric piercing points from about 40 RING stations, equally distributed over the Italian territory, are interpolated using locally (weighted) regression scatter plot smoothing (LOWESS). The validation is performed by comparing the IONORING TEC maps (in real-time) with independent products: i) the Global Ionospheric Maps (GIM) - final product- provided by the International GNSS Service (IGS), and ii) the European TEC maps from the Royal Observatory of Belgium. The validation results are satisfactory in terms of Root Mean Square Error (RMSE) between 2 and 3 TECu for both comparisons. The potential of IONORING in depicting the TEC daily and seasonal variations is analyzed over 3 years, from May 2017 to April 2020, as well as its capability to account for the effect of the disturbed geospace on the ionosphere at mid-latitudes. The IONORING response to the X9.3 flare event of September 2017 highlights a sudden TEC increase over Italy of about 20%, with a small, expected dependence on the latitude, i.e., on the distance from the subsolar point. Subsequent large regional TEC various were observed in response to related follow-on geomagnetic storms. This storm is also used as a case event to demonstrate the potential of IONORING in improving the accuracy of the GNSS Single Point Positioning. By processing data in kinematic mode and by using the Klobuchar as the model to provide the ionospheric correction, the resulting Horizontal Positioning Error is 4.3 m, lowering to, 3.84 m when GIM maps are used. If IONORING maps are used as the reference ionosphere, the error is as low as 2.5 m. Real-times application and services in which IONORING is currently integrated are also described in the conclusive remarks.


2021 ◽  
Author(s):  
Ehsan Forootan ◽  
Mona Kosary ◽  
Saeed Farzaneh ◽  
Maike Schumacher

<p>The development of space-geodetic observation techniques has brought out a wide range of applications such as positioning and navigation, where the Global Navigation Satellite System (GNSS) is the main tools to provide surveying measurements in these applications. Though GNSS signals enable the calculation of receiver's position, some errors restrict their accuracy. Among these errors, the ionospheric delay is considered as an important error source in the Standard Point Positioning (SPP) applications. Empirical ionospheric models such as Klobuchar, International Reference Ionosphere (IRI), and NeQuick are often applied for computing the Total Electron Content (TEC) within ionosphere and its equivalent delays. However the simulation and forecasting skills of these models are limited due to the simplified model structures and model sensitivity to the calibration period. In this study, we present a novel sequential Calibration approach based on the Ensemble Kalman Filter (C-EnKF) to improve the performance of TEC estimations for SPP applications. To demonstrate the results, the IRI model is used as our basis and the TEC estimates from 56 IGS stations in Europe are applied as observation. The C-EnKF is applied to calibrate some selected model parameter so that IRI can be tuned over Europe. The numerical assessments are performed against the TEC estimates from dual frequency GNSS measurements and against the final IONEX products (that are available with 11 days delays). Based on the forecasting results (during September 2017), we show that the accuracy of TEC estimates from the C-EnKF is improved in the range of 3.7-64.87% compared to IRI. <strong>Keywords: </strong>Ionosphere, Sequential Calibration, Ensemble Kalman Filter (EnKF), IRI, Total Electron Content (TEC), Standard Point Positioning (SPP), GNSS</p>


Sign in / Sign up

Export Citation Format

Share Document