High-sensitivity phase detecting system for measurement of weak displacement signals on the liquid free surface in thermocapillary convection

2018 ◽  
Vol 48 (8) ◽  
pp. 908-920
Author(s):  
WenHui CAO ◽  
Li DUAN ◽  
YongQiang LI ◽  
Qi KANG
1995 ◽  
Vol 117 (3) ◽  
pp. 611-618 ◽  
Author(s):  
Y. Kamotani ◽  
S. Ostrach ◽  
A. Pline

Results are reported of the Surface Tension Driven Convection Experiment (STDCE) aboard the USML-1 Spacelab, which was launched on June 25, 1992. In the experiment, 10 cSt silicone oil was placed in an open 10-cm-dia circular container, which was 5 cm deep. The fluid was heated either by a cylinderical heater (1.11 cm diameter) located along the container centerline or by a CO2 laser beam to induce thermocapillary flow. Several thermistor probes were placed in the fluid to measure the temperature distribution. The temperature distribution along the liquid-free surface was measured by an infrared imager. Tests were conducted over a range of heating powers, laser-beam diameters, and free surface shapes. An extensive numerical modeling of the flow was conducted in conjunction with the experiments. Some results of the temperature measurements with flat free surfaces are presented in this paper and they are shown to agree well with the numerical predictions.


1997 ◽  
Vol 36 (13) ◽  
pp. 2905
Author(s):  
Luis P. Thomas ◽  
Roberto Gratton ◽  
Beatriz M. Marino

2001 ◽  
Author(s):  
Bok-Cheol Sim ◽  
Abdelfattah Zebib

Abstract Thermocapillary convection driven by a uniform heat flux in an open cylindrical container of unit aspect ratio is investigated by two- and three-dimensional numerical simulations. The undeformable free surface is either flat or curved as determined by the fluid volume (V ≤ 1) and the Young-Laplace equation. Convection is steady and axisymmetric at sufficiently low values of the Reynolds number (Re) with either flat or curved interfaces. Only steady convection is possible in strictly axisymmetric computations. Transition to oscillatory three-dimensional motions occurs as Re increases beyond a critical value dependent on Pr and V. With a flat free surface (V = 1), two-lobed pulsating waves are found on the free surface and prevail with increasing Re. While the critical Re increases with increasing Pr, the critical frequency decreases. In the case of a concave surface, four azimuthal waves are found rotating clockwise on the surface. The critical Re decreases with increasing fluid volume, and the critical frequency is found to increase. The numerical results with either flat or curved free surfaces are in good quantitative agreement with space experiments.


2020 ◽  
Vol 24 (6 Part B) ◽  
pp. 4159-4171
Author(s):  
Shuo Yang ◽  
Rui Ma ◽  
Qiaosheng Deng ◽  
Guofeng Wang ◽  
Yu Gao ◽  
...  

A uniform axial or transverse magnetic field is applied on the silicon oil based ferrofluid of high Prandtl number fluid (Pr ? 111.67), and the effect of magnetic field on the thermocapillary convection is investigated. It is shown that the location of vortex core of thermocapillary convection is mainly near the free surface of liquid bridge due to the inhibition of the axial magnetic field. A velocity stagnation region is formed inside the liquid bridge under the axial magnetic field (B = 0.3-0.5 T). The disturbance of bulk reflux and surface flow is suppressed by the increasing axial magnetic field. There is a dynamic response of free surface deformation to the axial magnetic field, and then the contact angle variation of the free surface at the hot corner is as following, ?hot, B = 0.5 T = 83.34? > ?hot, B = 0.3 T = 72.16? > > ?hot,B = 0.1 T = 54.21? > ?hot, B = 0 T = 43.33?. The results show that temperature distribution near the free surface is less and less affected by thermocapillary convection with the increasing magnetic field, and it presents a characteristic of heat-conduction. In addition, the transverse magnetic field does not realize the fundamental inhibition for thermocapillary convection, but it transfers the influence of thermocapillary convection to the free surface.


Sign in / Sign up

Export Citation Format

Share Document