Infrared propagation and performance modeling at the Electro-Optical Test Facility

1980 ◽  
Vol 19 (12) ◽  
pp. 1953 ◽  
Author(s):  
Devon G. Crowe ◽  
D. K. Cohen ◽  
Eustace L. Dereniak
SIAM Review ◽  
2009 ◽  
Vol 51 (1) ◽  
pp. 129-159 ◽  
Author(s):  
Kaushik Datta ◽  
Shoaib Kamil ◽  
Samuel Williams ◽  
Leonid Oliker ◽  
John Shalf ◽  
...  

2015 ◽  
Vol 78 ◽  
pp. 1-6 ◽  
Author(s):  
D.R. Giosio ◽  
A.D. Henderson ◽  
J.M. Walker ◽  
P.A. Brandner ◽  
J.E. Sargison ◽  
...  

Author(s):  
Tim Wendelin ◽  
Ken May ◽  
Randy Gee

Significant progress has been made recently in solar parabolic trough technology development and deployment. Part of this success is due to the changing world energy scenario and the recognition that viable renewable energy technologies can play a role in supplying world energy needs. Part is also due to ongoing collaborative efforts by industry and the Department of Energy’s (DOE) Concentrating Solar Power Program (CSP) to enhance the state of the technology in terms of both cost and performance. Currently, there are two trough concentrator projects which the DOE CSP program is supporting. One company, Solargenix, is developing a design to be used in a 64MW plant outside of Boulder City, Nevada. This design is based on the original LUZ LS-2 trough concentrators employed at the Solar Electric Generating Systems (SEGS) plants in Southern California. Another company, Industrial Solar Technology (IST), is working on a scale-up of their design used historically for process heat applications. Very different from the LS-2 approach, this design is still in the research and development stages. One way in which the DOE CSP parabolic trough program assists industry is by providing optical testing and qualification of their concentrator designs. This paper describes the Video Scanning Hartmann Optical Test System (VSHOT) used to optically test both of these designs. The paper also presents the results of tests performed in the past year and what impact the testing has had on the developmental direction of each design.


2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Hyun-Sik Park ◽  
Byung-Yeon Min ◽  
Youn-Gyu Jung ◽  
Yong-Cheol Shin ◽  
Yung-Joo Ko ◽  
...  

To validate the performance and safety of an integral type reactor of SMART, a thermal-hydraulic integral effect test facility, VISTA-ITL, is introduced with a discussion of its scientific design characteristics. The VISTA-ITL was used extensively to assess the safety and performance of the SMART design, especially for its passive safety system such as a passive residual heat removal system, and to validate various thermal-hydraulic analysis codes. The VISTA-ITL program includes several tests on the SBLOCA, CLOF, and PRHRS performances to support a verification of the SMART design and contribute to the SMART design licensing by providing proper test data for validating the system analysis codes. A typical scenario of SBLOCA was analyzed using the MARS-KS code to assess the thermal-hydraulic similarity between the SMART design and the VISTA-ITL facility, and a posttest simulation on a SBLOCA test for the shutdown cooling system line break has been performed with the MARS-KS code to assess its simulation capability for the SBLOCA scenario of the SMART design. The SBLOCA scenario in the SMART design was well reproduced using the VISTA-ITL facility, and the measured thermal-hydraulic data were properly simulated with the MARS-KS code.


1994 ◽  
Vol 37 (6) ◽  
pp. 1899-1905
Author(s):  
P. H. Orr ◽  
M. T. Glynn ◽  
J. M. Sacks

Sign in / Sign up

Export Citation Format

Share Document