Dependence of birefringence and residual stress near laser-induced cracks in fused silica on laser fluence and on laser-pulse number

1998 ◽  
Vol 37 (33) ◽  
pp. 7772 ◽  
Author(s):  
Faiz Dahmani ◽  
Ansgar W. Schmid ◽  
John C. Lambropoulos ◽  
Stephen Burns
2014 ◽  
Vol 47 (43) ◽  
pp. 435105 ◽  
Author(s):  
Kaihu Zhang ◽  
Lan Jiang ◽  
Xin Li ◽  
Xuesong Shi ◽  
Dong Yu ◽  
...  

2012 ◽  
Vol 11 (04) ◽  
pp. 709-721 ◽  
Author(s):  
QIAN-ZHEN SU ◽  
JIE YU ◽  
KAI-JUN YUAN ◽  
SHU-LIN CONG

Above-threshold dissociation (ATD) process of the molecular ions HD+ steered by a femtosecond laser pulse train (LPT) is investigated theoretically using the time-dependent quantum wave packet method. Energy-dependent distributions of ATD fragments are analyzed by using an asymptotic-flow expression in the momentum space. It is found that fragment kinetic energy spectra shift to low energy region with increasing pulse number of LPT. The photofragment branching ratio between the 1sσg and 2pσu dissociation channels is sensitive to the pulse number of LPT. The momentum distribution of the ATD fragments is discussed in detail.


2021 ◽  
Vol 39 (1B) ◽  
pp. 197-202
Author(s):  
Ghufran S. Jaber ◽  
Khawla S. Khashan ◽  
Maha J. Abbas

The effects of varying laser pulse numbers on the fabricated of ZnONPs by pulsed laser ablation in deionized water of Zn-metal are investigated. The Nd: YAG laser at energy 600mJ prepared three samples by change the laser pulse number (100, 150, and 200). The results were collected and examined using an electron scanning microscope, XRD – diffraction, and transmission electron microscope. The result revealed the colloidal spherical shape and the homogeneous composition of the ZnO NPs. The nanoparticles resulted in different concentrations and sized distributions by changing the pulse number of a laser. The average particle size and the mass concentration of particle size increase with an increasing number of laser pulses by fixed the laser energy.


2016 ◽  
Vol 1136 ◽  
pp. 531-536
Author(s):  
Run Qiang Li ◽  
Peng Yao ◽  
Hao Meng ◽  
Jun Wang ◽  
Ke Zhang ◽  
...  

To grind fused silica in ductile mode, it was proposed to repair surface and subsurface micro cracks of fused silica by CO2 laser irradiation. However, excessive residual stress remains on the surface because the melt fused silica on the surface quenches in air. It causes the critical depth of cut for ductile grinding fused silica to be smaller than 0.2μm. To investigate the distribution of the residual stress and look for an optimal manner of irradiation to control residual tensile stress, a numerical model of was built for simulating the dynamic behavior of fused silica when irradiated by CO2 laser. Laser energy absorption, heat transmission, viscoelastic behavior of fused silica and thermally induced stress were considered in the numerical simulation. The results show how the residual stress is formed and distributed. We found that an appropriate control of the temperature field as a function of time and position in the laser process is the key to reduce the residual stress. Therefore, three kinds of processes were proposed to reduce residual tensile stress on the surface of fused silica introduced by laser irradiation. The residual stress distributions of these three processes were compared by numerical analysis to decide a better method of laser irradiation.


2010 ◽  
Vol 102 (1) ◽  
pp. 39-44 ◽  
Author(s):  
Xianhua Wang ◽  
Feng Chen ◽  
Qing Yang ◽  
Hewei Liu ◽  
Hao Bian ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document