High-speed 3D digital image correlation for rolling deformation of a tire sidewall and measuring dynamic contact patch length

2020 ◽  
Vol 59 (5) ◽  
pp. 1313
Author(s):  
Xueliang Gao ◽  
Ye Zhuang ◽  
Shu Liu ◽  
Weiguang Fan ◽  
Chengwei Zhu ◽  
...  
2008 ◽  
Vol 130 (4) ◽  
Author(s):  
S. B. Park ◽  
Chirag Shah ◽  
Jae B. Kwak ◽  
Changsoo Jang ◽  
Soonwan Chung ◽  
...  

In this work, a new experimental methodology for analyzing the drop impact response is assessed using a pair of high-speed digital cameras and 3D digital image correlation software. Two different test boards are subjected to Joint Electron Device Engineering Council (JEDEC) standard free-fall impact conditions of half-sine pulse of 1500 G in magnitude and 0.5 ms in duration. The drop is monitored using a pair of synchronized high-speed cameras at a rate of up to 15,000 frames per second. The acquired images are subsequently analyzed to give full-field dynamic deformation, shape, and strain over the entire board during and after impact. To validate this new methodology for analyzing the impact response, the in-plane strain as well as the out-of-plane acceleration at selected locations were measured simultaneously during the drop using strain gauge and accelerometers and were compared with those obtained using high-speed cameras and 3D digital image correlation presented in this paper. Comparison reveals excellent correlation of the transient behavior of the board during impact and confirms the feasibility of using the full-field measurement technique used in this study.


Proceedings ◽  
2018 ◽  
Vol 2 (8) ◽  
pp. 538 ◽  
Author(s):  
Ahmed Elmahdy ◽  
Patricia Verleysen

The aim of this paper is to assess and compare the performance of both high speed 2D and 3D digital image correlation (DIC) configurations in the characterization of unidirectional carbon fiber reinforced epoxy composites in high strain rate tension in the transverse direction. The criteria for assessment were in terms of strain resolution and measuring the strain localization within the gauge section. Results showed the high-speed 3D DIC technique has lower strain resolution compared to the high-speed 2D DIC technique. In addition, the analysis of the full strain fields indicated that the 3D DIC technique could accurately locate and measure the concentrations of strains within the gauge section of the tested samples.


2017 ◽  
Vol 131 ◽  
pp. 153-164 ◽  
Author(s):  
Mark Flores ◽  
David Mollenhauer ◽  
Vipul Runatunga ◽  
Timothy Beberniss ◽  
Daniel Rapking ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document