Simultaneous two-dimensional flow velocity and gas temperature measurements by use of a combined particle image velocimetry and filtered Rayleigh scattering technique

2001 ◽  
Vol 40 (30) ◽  
pp. 5379 ◽  
Author(s):  
Dieter Most ◽  
Alfred Leipertz
Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Ahmad Falahatpisheh ◽  
Arash Kheradvar

Introduction: The two-dimensional (2D) echocardiographic particle image velocimetry technique that was introduced in 2010 received much attention in clinical cardiology. Cardiac flow visualization based on contrast echocardiography results in images with high temporal resolution that are obtainable at relatively low cost. This makes it an ideal diagnostic and follow-up tool for routine clinical use. However, cardiac flow in a cardiac cycle is multidirectional with a tendency to spin in three dimensions rather than two-dimensional curl. Here, for the first time, we introduce a volumetric echocardiographic particle image velocimetry technique that robustly acquires the flow in three spatial dimensions and in time: Volumetric Echocardiographic Particle Image Velocimetry (V-Echo-PIV). Methods: V-Echo-PIV technique utilizes matrix array 3D ultrasound probes to capture the flow seeded with an ultrasound contrast agent (Definity). For this feasibility study, we used a pulse duplicator with a silicone ventricular sac along with bioprosthetic heart valves at the inlet and outlet. GE Vivid E9 system with an Active Matrix 4D Volume Phased Array probe at 30 Hz was used to capture the flow data (Figure 1). Results: The 3D particle field was obtained with excellent spatial resolution without significant noise (Figure 1). 3D velocity field was successfully captured for multiple cardiac cycles. Flow features are shown in Figure 2 where the velocity vectors in two selected slices and some streamlines in 3D space are depicted. Conclusions: We report successful completion of the feasibility studies for volumetric echocardiographic PIV in an LV phantom. The small-scale features of flow in the LV phantom were revealed by this technique. Validation and human studies are currently in progress.


2001 ◽  
Vol 31 (5) ◽  
pp. 519-532 ◽  
Author(s):  
J. C. Béra ◽  
M. Michard ◽  
N. Grosjean ◽  
G. Comte-Bellot

Author(s):  
C. W. Foley ◽  
I. Chterev ◽  
J. Seitzman ◽  
T. Lieuwen

Understanding the mechanisms and physics of flame stabilization and blowoff of premixed flames is critical toward the design of high velocity combustion devices. In the high bulk flow velocity situation typical of practical combustors, the flame anchors in shear layers where the local flow velocities are much lower. Within the shear layer, fluid strain deformation rates are very high and the flame can be subjected to significant stretch levels. The main goal of this work was to characterize the flow and stretch conditions that a premixed flame experiences in a practical combustor geometry and to compare these values to calculated extinction values. High resolution, simultaneous particle image velocimetry (PIV) and planar laser induced fluorescence of CH radicals (CH-PLIF) measurements are used to capture the flame edge and near-field stabilization region. When approaching lean limit extinction conditions, we note characteristic changes in the stretch and flow conditions experienced by the flame. Most notably, the flame becomes less critically stretched when fuel/air ratio is decreased. However, at these lean conditions, the flame is subject to higher mean flow velocities at the edge, suggesting less favorable flow conditions are present at the attachment point of the flame as blowoff is approached. These measurements suggest that blowoff of the flame from the shear layer is not directly stretch extinction induced, but rather the result of an imbalance between the speed of the flame edge and local tangential flow velocity.


Sign in / Sign up

Export Citation Format

Share Document