Experimental identification of grating profile by neuralnetwork classifier in optical scatterometry

2021 ◽  
Author(s):  
Moustapha Godi Tchéré ◽  
Stephane Robert ◽  
Zaki Fawzi ◽  
Bernard Bayard ◽  
damien jamon ◽  
...  
Author(s):  
Haiyuan Liu ◽  
Xin Huo ◽  
Zhaosheng Guo ◽  
Sizhao Feng ◽  
Yongjiang Pi ◽  
...  

2019 ◽  
Vol 14 (3) ◽  
pp. 211-225 ◽  
Author(s):  
Ming Fang ◽  
Xiujuan Lei ◽  
Ling Guo

Background: Essential proteins play important roles in the survival or reproduction of an organism and support the stability of the system. Essential proteins are the minimum set of proteins absolutely required to maintain a living cell. The identification of essential proteins is a very important topic not only for a better comprehension of the minimal requirements for cellular life, but also for a more efficient discovery of the human disease genes and drug targets. Traditionally, as the experimental identification of essential proteins is complex, it usually requires great time and expense. With the cumulation of high-throughput experimental data, many computational methods that make useful complements to experimental methods have been proposed to identify essential proteins. In addition, the ability to rapidly and precisely identify essential proteins is of great significance for discovering disease genes and drug design, and has great potential for applications in basic and synthetic biology research. Objective: The aim of this paper is to provide a review on the identification of essential proteins and genes focusing on the current developments of different types of computational methods, point out some progress and limitations of existing methods, and the challenges and directions for further research are discussed.


2011 ◽  
Author(s):  
Liviu Bereteu ◽  
Gheorghe Eugen Drăgănescu ◽  
Dan Viorel Stănescu ◽  
Madalin Bunoiu ◽  
Iosif Malaescu

2010 ◽  
Vol 43 ◽  
pp. S66
Author(s):  
M. Hayashibe ◽  
Q. Zhang ◽  
D. Guiraud ◽  
C. Fattal ◽  
P. Fraisse

2013 ◽  
Vol 486 ◽  
pp. 205-210
Author(s):  
Zuzana Lašová ◽  
Robert Zemcik

This work is focused on identification of material properties of piezoelectric patch transducers used e.g. for structural health monitoring before attaching to the substrate structure. Two experimental methods were concerned. At first two piezoelectric patches were supplied with a pair of collocated strain gauge rosettes. Both transducers were actuated with the same periodical signal. Significant difference in the results for two transducers was found, however it was claimed to be within tolerance by the producer. As an alternative method a measurement in an optical microscope was chosen. The patch was clamped at one side and actuated by a voltage signal. The displacement of the free end was captured by the microscope and processed in a graphical editor. Finally, a finite element model of the transducer was created and its material data were obtained by calibration with experimental data.


Sign in / Sign up

Export Citation Format

Share Document