Single-sequence stable spectroscopic reflectometryusing simultaneous measurement of incident light andreflected light

2021 ◽  
Author(s):  
Sin Yong Lee ◽  
Seung Woo Lee ◽  
GARAM CHOI ◽  
Yeongchan Cho ◽  
Heui Jae Pahk
2020 ◽  
Vol 2020 (28) ◽  
pp. 356-360
Author(s):  
Shinichi Inoue ◽  
Norimichi Tsumura

In this study, we propose the simultaneous measurement method of the bidirectional reflection distribution function (BRDF) and the radius of curvature by using pattern illumination. For nonplanar objects, the angle of reflection light changes according to the surface normal angle of curved object. Therefore, it is necessary to consider the effects of curved surfaces when measuring the BRDF on non-planar surfaces. We suppose a convex surface that can be represented by a constant radius of curvature. The pattern of illumination was generated by placing the illumination mask with pattern apertures in the incident light path of the BRDF measurement apparatus in which the incident light is collimated light. We developed the measurement apparatus. We measured four types of sample with different BRDFs on three different radiuses of curvature. The results showed that the BRDF and the radius of curvature can be measured simultaneously by using the pattern illumination.


2014 ◽  
Vol 134 (3) ◽  
pp. 41-46
Author(s):  
Hironori Kumazaki ◽  
Munehiro Hiramatsu ◽  
Hisakazu Oguri ◽  
Seiki Inaba ◽  
Kazuhiro Hane

2020 ◽  
Vol 2020 (2) ◽  
pp. 100-1-100-6
Author(s):  
Takuya Omura ◽  
Hayato Watanabe ◽  
Naoto Okaichi ◽  
Hisayuki Sasaki ◽  
Masahiro Kawakita

We enhanced the resolution characteristics of a threedimensional (3D) image using time-division multiplexing methods in a full-parallax multi-view 3D display. A time-division light-ray shifting (TDLS) method is proposed that uses two polarization gratings (PGs). As PG changes the diffraction direction of light rays according to the polarization state of the incident light, this method can shift light rays approximately 7 mm in a diagonal direction by switching the polarization state of incident light and adjusting the distance between the PGs. We verified the effect on the characteristics of 3D images based on the extent of the shift. As a result, the resolution of a 3D image with depth is improved by shifting half a pitch of a multi-view image using the TDLS method, and the resolution of the image displayed near the screen is improved by shifting half a pixel of each viewpoint image with a wobbling method. These methods can easily enhance 3D characteristics with a small number of projectors.


Author(s):  
A. G. Belova ◽  
E. V. Zimina ◽  
N. P. Simbirtsev

During a pathoanatomic autopsy, it is very important to correctly assess the color change of the organs. However, it is not always clear because the color depends on the spectrum of the incident light. There is also a subjective assessment of color. In addition, in animals with large amounts of circulating blood, for example, dogs, early imbibition occurs, which makes it difficult to assess the color of the organ and pathoanatomical diagnosis. We have proposed a simple and visual method of recognition of two pathological processes – inflammation and edema using colored filters. This technique also allows to accurately differentiate inflammation from postmortem imbibition, to recognize fibrin and hemorrhage well. Postmortem examination of different types of animals (predacious families of mustelids, canids, felids) was performed in accordance with Shore’s method in the prosectorium of the Pathonomy Department, K.I. Skryabin Moscow State Academy of Veterinary Medicine and Biotechnology visual analysis – under various artificial lights (fluorescent lamps with banded spectrum and halogen lamps). In the red filter are well identified the pathological processes associated with the venous blood presence in the tissues (venous hyperemia and pulmonary edema). The focus of venous hyperemia or edema in the red filter looks like a dark zone, and tissues, where arterial bloods predominated, aren’t detected in red filter. In the yellow – green filter the inflammation is clearly detected: the zone is brightly red and surrounding tissues become dark. Red colour filters have rather narrow band of transmittance from 600 to 700 nm. Yellow-green have a width zone – from 500 to 700 nm, including both red, and yellow-green part of spectrum. Oxidized hemoglobin in red part of spectrum absorbs ten time weaker, has more high reflectivity and looks red. Surrounding tissues reflect the red rays, which incident on them also red. Therefore, the zone of edema, venous hyperemia and hemorrhaging, containing venous blood, are detected the dark spot, and inflammation zone merges with the red background. Oxidized hemoglobin in the red spectrum part absorbs ten time weaker than reduced hemoglobin, has high reflectivity of the red spectrum part and looks brightly red, surrounding tissues reflect yellow-green spectrum part and look green. Therefore, the zones of inflammation, active hyperemia and hemorrhaging, containing arterial blood, sharp contrast with green background and are clearly visible. Diagnoses made with the help of color filters are confirmed by histological studies.


2020 ◽  
Vol 59 (9) ◽  
pp. 096503
Author(s):  
Nairit Das ◽  
Neha Bhattacharyya ◽  
Soumendra Singh ◽  
Animesh Halder ◽  
Deep Shikha ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document