Research on the reconstruction of the leaking gas cloud from passive FTIR scanning remote sensing by image segmentation

2021 ◽  
Author(s):  
YUNYOU HU ◽  
Liang Xu ◽  
Xianchun Shen ◽  
Lin Jin ◽  
HanYang Xu ◽  
...  
2020 ◽  
Vol 12 (11) ◽  
pp. 1772
Author(s):  
Brian Alan Johnson ◽  
Lei Ma

Image segmentation and geographic object-based image analysis (GEOBIA) were proposed around the turn of the century as a means to analyze high-spatial-resolution remote sensing images. Since then, object-based approaches have been used to analyze a wide range of images for numerous applications. In this Editorial, we present some highlights of image segmentation and GEOBIA research from the last two years (2018–2019), including a Special Issue published in the journal Remote Sensing. As a final contribution of this special issue, we have shared the views of 45 other researchers (corresponding authors of published papers on GEOBIA in 2018–2019) on the current state and future priorities of this field, gathered through an online survey. Most researchers surveyed acknowledged that image segmentation/GEOBIA approaches have achieved a high level of maturity, although the need for more free user-friendly software and tools, further automation, better integration with new machine-learning approaches (including deep learning), and more suitable accuracy assessment methods was frequently pointed out.


Author(s):  
Filiberto Pla ◽  
Gema Gracia ◽  
Pedro García-Sevilla ◽  
Majid Mirmehdi ◽  
Xianghua Xie

2012 ◽  
Vol 532-533 ◽  
pp. 732-737
Author(s):  
Xi Jie Wang ◽  
Xiao Fan Zhao

This paper presents a new multi-resolution Markov random field model in Contourlet domain for unsupervised texture image segmentation. In order to make full use of the merits of Contourlet transformation, we introduce the taditional MRMRF model into Contourlet domain, in a manner of variable interation between two components in the tradtional MRMRF model. Using this method, the new model can automatically estimate model parameters and produce accurate unsupervised segmentation results. The results obtained on synthetic texture images and remote sensing images demonstrate that a better segmentation is achieved by our model than the traditional MRMRF model.


2003 ◽  
Vol 24 (12) ◽  
pp. 2515-2532 ◽  
Author(s):  
D. C. Mason ◽  
G. Q. A. Anderson ◽  
R. B. Bradbury ◽  
D. M. Cobby ◽  
I. J. Davenport ◽  
...  

Author(s):  
Y. Yang ◽  
H. T. Li ◽  
Y. S. Han ◽  
H. Y. Gu

Image segmentation is the foundation of further object-oriented image analysis, understanding and recognition. It is one of the key technologies in high resolution remote sensing applications. In this paper, a new fast image segmentation algorithm for high resolution remote sensing imagery is proposed, which is based on graph theory and fractal net evolution approach (FNEA). Firstly, an image is modelled as a weighted undirected graph, where nodes correspond to pixels, and edges connect adjacent pixels. An initial object layer can be obtained efficiently from graph-based segmentation, which runs in time nearly linear in the number of image pixels. Then FNEA starts with the initial object layer and a pairwise merge of its neighbour object with the aim to minimize the resulting summed heterogeneity. Furthermore, according to the character of different features in high resolution remote sensing image, three different merging criterions for image objects based on spectral and spatial information are adopted. Finally, compared with the commercial remote sensing software eCognition, the experimental results demonstrate that the efficiency of the algorithm has significantly improved, and the result can maintain good feature boundaries.


Author(s):  
Vladimir Yu. Volkov ◽  
Oleg A. Markelov ◽  
Mikhail I. Bogachev

Introduction. Detection, isolation, selection and localization of variously shaped objects in images are essential in a variety of applications. Computer vision systems utilizing television and infrared cameras, synthetic aperture surveillance radars as well as laser and acoustic remote sensing systems are prominent examples. Such problems as object identification, tracking and matching as well as combining information from images available from different sources are essential. Objective. Design of image segmentation and object selection methods based on multi-threshold processing. Materials and methods. The segmentation methods are classified according to the objects they deal with, including (i) pixel-level threshold estimation and clustering methods, (ii) boundary detection methods, (iii) regional level, and (iv) other classifiers, including many non-parametric methods, such as machine learning, neural networks, fuzzy sets, etc. The keynote feature of the proposed approach is that the choice of the optimal threshold for the image segmentation among a variety of test methods is carried out using a posteriori information about the selection results. Results. The results of the proposed approach is compared against the results obtained using the well-known binary integration method. The comparison is carried out both using simulated objects with known shapes with additive synthesized noise as well as using observational remote sensing imagery. Conclusion. The article discusses the advantages and disadvantages of the proposed approach for the selection of objects in images, and provides recommendations for their use.


Sign in / Sign up

Export Citation Format

Share Document