On-orbit vicarious calibration of ocean color sensors using an ocean surface reflectance model

2007 ◽  
Vol 46 (23) ◽  
pp. 5649 ◽  
Author(s):  
P. Jeremy Werdell ◽  
Sean W. Bailey ◽  
Bryan A. Franz ◽  
André Morel ◽  
Charles R. McClain
2017 ◽  
Vol 34 (7) ◽  
pp. 1423-1432 ◽  
Author(s):  
Kenneth J. Voss ◽  
Howard R. Gordon ◽  
Stephanie Flora ◽  
B. Carol Johnson ◽  
Mark Yarbrough ◽  
...  

AbstractThe upwelling radiance attenuation coefficient KLu in the upper 10 m of the water column can be significantly influenced by inelastic scattering processes and thus will vary even with homogeneous water properties. The Marine Optical Buoy (MOBY), the primary vicarious calibration site for many ocean color sensors, makes measurements of the upwelling radiance Lu at 1, 5, and 9 m, and uses these values to determine KLu and to propagate the upwelling radiance directed toward the zenith, Lu, at 1 m to and through the surface. Inelastic scattering causes the KLu derived from the measurements to be an underestimate of the true KLu from 1 m to the surface at wavelengths greater than 575 nm; thus, the derived water-leaving radiance is underestimated at wavelengths longer than 575 nm. A method to correct this KLu, based on a model of the upwelling radiance including Raman scattering and chlorophyll fluorescence, has been developed that corrects this bias. The model has been experimentally validated, and this technique can be applied to the MOBY dataset to provide new, more accurate products at these wavelengths. When applied to a 4-month MOBY deployment, the corrected water-leaving radiance Lw can increase by 5% (600 nm), 10% (650 nm), and 50% (700 nm). This method will be used to provide additional and more accurate products in the MOBY dataset.


2010 ◽  
Vol 49 (5) ◽  
pp. 798 ◽  
Author(s):  
Frédéric Mélin ◽  
Giuseppe Zibordi

2009 ◽  
Vol 26 (1) ◽  
pp. 57-73 ◽  
Author(s):  
Michael E. Feinholz ◽  
Stephanie J. Flora ◽  
Mark A. Yarbrough ◽  
Keith R. Lykke ◽  
Steven W. Brown ◽  
...  

Abstract The Marine Optical System is a spectrograph-based sensor used on the Marine Optical Buoy for the vicarious calibration of ocean color satellite sensors. It is also deployed from ships in instruments used to develop bio-optical algorithms that relate the optical properties of the ocean to its biological content. In this work, an algorithm is applied to correct the response of the Marine Optical System for scattered, or improperly imaged, light in the system. The algorithm, based on the measured response of the system to a series of monochromatic excitation sources, reduces the effects of scattered light on the measured source by one to two orders of magnitude. Implications for the vicarious calibration of satellite ocean color sensors and the development of bio-optical algorithms are described. The algorithm is a one-dimensional point spread correction algorithm, generally applicable to nonimaging sensors, but can in principle be extended to higher dimensions for imaging systems.


Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 139
Author(s):  
Shengli Chen ◽  
Xiaobing Zheng ◽  
Xin Li ◽  
Wei Wei ◽  
Shenda Du ◽  
...  

To calibrate the low signal response of the ocean color (OC) bands and test the stability of the Fengyun-3D (FY-3D)/Medium Resolution Spectral Imager II (MERSI-II), an absolute radiometric calibration field test of FY-3D/MERSI-II at the Lake Qinghai Radiometric Calibration Site (RCS) was carried out in August 2018. The lake surface and atmospheric parameters were mainly measured by advanced observation instruments, and the MODerate spectral resolution atmospheric TRANsmittance algorithm and computer model (MODTRAN4.0) was used to simulate the multiple scattering radiance value at the altitude of the sensor. The results showed that the relative deviations between bands 9 and 12 are within 5.0%, while the relative deviations of bands 8, and 13 are 17.1%, and 12.0%, respectively. The precision of the calibration method was verified by calibrating the Aqua/Moderate-resolution Imaging Spectroradiometer (MODIS) and National Polar-orbiting Partnership (NPP)/Visible Infrared Imaging Radiometer (VIIRS), and the deviation of the calibration results was evaluated with the results of the Dunhuang RCS calibration and lunar calibration. The results showed that the relative deviations of NPP/VIIRS were within 7.0%, and the relative deviations of Aqua/MODIS were within 4.1% from 400 nm to 600 nm. The comparisons of three on-orbit calibration methods indicated that band 8 exhibited a large attenuation after launch and the calibration results had good consistency at the other bands except for band 13. The uncertainty value of the whole calibration system was approximately 6.3%, and the uncertainty brought by the field surface measurement reached 5.4%, which might be the main reason for the relatively large deviation of band 13. This study verifies the feasibility of the vicarious calibration method at the Lake Qinghai RCS and provides the basis and reference for the subsequent on-orbit calibration of FY-3D/MERSI-II.


2008 ◽  
Vol 8 (1) ◽  
pp. 3721-3759 ◽  
Author(s):  
J. Vidot ◽  
R. Santer ◽  
O. Aznay

Abstract. The Medium Resolution Imaging Spectrometer (MERIS) launched in February 2002 on-board the ENVISAT spacecraft is making global observations of top-of-atmosphere (TOA) radiances. Aerosol optical properties are retrieved over land using Look-Up Table (LUT) based algorithm and surface reflectances in the blue and the red spectral regions. We compared instantaneous aerosol optical thicknesses retrieved by MERIS in the blue and the red at locations containing sites within the Aerosol Robotic Network (AERONET). Between 2002 and 2005, a set of 500 MERIS images were used in this study. The result shows that, over land, MERIS aerosol optical thicknesses are well retrieved in the blue and poorly retrieved in the red, leading to an underestimation of the Angstrom coefficient. Correlations are improved by applying a simple criterion to avoid scenes probably contaminated by thin clouds. To investigate the weakness of the MERIS algorithm, ground-based radiometer measurements have been used in order to retrieve new aerosol models, based on their Inherent Optical Properties (IOP). These new aerosol models slightly improve the correlation, but the main problem of the MERIS aerosol product over land can be attributed to the surface reflectance model in the red.


2015 ◽  
Vol 8 (9) ◽  
pp. 9565-9609 ◽  
Author(s):  
M. Choi ◽  
J. Kim ◽  
J. Lee ◽  
M. Kim ◽  
Y. Je Park ◽  
...  

Abstract. The Geostationary Ocean Color Imager (GOCI) onboard the Communication, Ocean, and Meteorology Satellites (COMS) is the first multi-channel ocean color imager in geostationary orbit. Hourly GOCI top-of-atmosphere radiance has been available for the retrieval of aerosol optical properties over East Asia since March 2011. This study presents improvements to the GOCI Yonsei Aerosol Retrieval (YAER) algorithm over ocean and land together with validation results during the DRAGON-NE Asia 2012 campaign. Optical properties of aerosol are retrieved from the GOCI YAER algorithm including aerosol optical depth (AOD) at 550 nm, fine-mode fraction (FMF) at 550 nm, single scattering albedo (SSA) at 440 nm, Angstrom exponent (AE) between 440 and 860 nm, and aerosol type from selected aerosol models in calculating AOD. Assumed aerosol models are compiled from global Aerosol Robotic Networks (AERONET) inversion data, and categorized according to AOD, FMF, and SSA. Nonsphericity is considered, and unified aerosol models are used over land and ocean. Different assumptions for surface reflectance are applied over ocean and land. Surface reflectance over the ocean varies with geometry and wind speed, while surface reflectance over land is obtained from the 1–3 % darkest pixels in a 6 km × 6 km area during 30 days. In the East China Sea and Yellow Sea, significant area is covered persistently by turbid waters, for which the land algorithm is used for aerosol retrieval. To detect turbid water pixels, TOA reflectance difference at 660 nm is used. GOCI YAER products are validated using other aerosol products from AERONET and the MODIS Collection 6 aerosol data from "Dark Target (DT)" and "Deep Blue (DB)" algorithms during the DRAGON-NE Asia 2012 campaign from March to May 2012. Comparison of AOD from GOCI and AERONET gives a Pearson correlation coefficient of 0.885 and a linear regression equation with GOCI AOD =1.086 × AERONET AOD – 0.041. GOCI and MODIS AODs are more highly correlated over ocean than land. Over land, especially, GOCI AOD shows better agreement with MODIS DB than MODIS DT because of the choice of surface reflectance assumptions. Other GOCI YAER products show lower correlation with AERONET than AOD, but are still qualitatively useful.


2012 ◽  
Vol 51 (25) ◽  
pp. 6045 ◽  
Author(s):  
Chuanmin Hu ◽  
Lian Feng ◽  
Zhongping Lee ◽  
Curtiss O. Davis ◽  
Antonio Mannino ◽  
...  

2015 ◽  
Vol 159 ◽  
pp. 361-369 ◽  
Author(s):  
Giuseppe Zibordi ◽  
Frédéric Mélin ◽  
Kenneth J. Voss ◽  
B. Carol Johnson ◽  
Bryan A. Franz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document