Proof-of-principle experimental demonstration of twin-field quantum key distribution over asymmetric channels

Author(s):  
Xiaoqing Zhong ◽  
Wenyuan Wang ◽  
Li Qian ◽  
Hoi-Kwong Lo
2019 ◽  
Vol 28 (10) ◽  
pp. 104203
Author(s):  
Yi-Bo Zhao ◽  
Wan-Li Zhang ◽  
Dong Wang ◽  
Xiao-Tian Song ◽  
Liang-Jiang Zhou ◽  
...  

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Siyu Han ◽  
Yutao Huang ◽  
Shang Mi ◽  
Xiaojuan Qin ◽  
Jindong Wang ◽  
...  

AbstractSemi-quantum key distribution (SQKD) is used to establish a string of shared secret keys between a quantum party and a classical party. Here, we report the first proof-of-principle experimental demonstration of SQKD based on the Mirror protocol, which is the most experimentally feasible SQKD protocol, and equipped with time-phase encoding scheme employing the method of selective modulation. The experiment was performed at a repetition frequency of 62.5 MHz and a high raw key rate arrived at 69.8 kbps, and the average quantum bit error rate was found to be 4.56% and 2.78% for the “SWAP-x-Z” ($\mathrm{x}\in \{01,10\}$ x ∈ { 01 , 10 } ) and the “CTRL-X”, respectively. The results demonstrate the feasibility of our system, and this study is helpful for future research on SQKD experiments.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Xiaoqing Zhong ◽  
Wenyuan Wang ◽  
Li Qian ◽  
Hoi-Kwong Lo

AbstractTwin-field (TF) quantum key distribution (QKD) is highly attractive because it can beat the fundamental limit of secret key rate for point-to-point QKD without quantum repeaters. Many theoretical and experimental studies have shown the superiority of TFQKD in long-distance communication. All previous experimental implementations of TFQKD have been done over optical channels with symmetric losses. But in reality, especially in a network setting, the distances between users and the middle node could be very different. In this paper, we perform a proof-of-principle experimental demonstration of TFQKD over optical channels with asymmetric losses. We compare two compensation strategies, that are (1) applying asymmetric signal intensities and (2) adding extra losses, and verify that strategy (1) provides much better key rate. Moreover, the higher the loss, the more key rate enhancement it can achieve. By applying asymmetric signal intensities, TFQKD with asymmetric channel losses not only surpasses the fundamental limit of key rate of point-to-point QKD for 50 dB overall loss, but also has key rate as high as 2.918 × 10−6 for 56 dB overall loss. Whereas no keys are obtained with strategy (2) for 56 dB loss. The increased key rate and enlarged distance coverage of TFQKD with asymmetric channel losses guarantee its superiority in long-distance quantum networks.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Byoung S. Ham

AbstractSo far, unconditional security in key distribution processes has been confined to quantum key distribution (QKD) protocols based on the no-cloning theorem of nonorthogonal bases. Recently, a completely different approach, the unconditionally secured classical key distribution (USCKD), has been proposed for unconditional security in the purely classical regime. Unlike QKD, both classical channels and orthogonal bases are key ingredients in USCKD, where unconditional security is provided by deterministic randomness via path superposition-based reversible unitary transformations in a coupled Mach–Zehnder interferometer. Here, the first experimental demonstration of the USCKD protocol is presented.


Sign in / Sign up

Export Citation Format

Share Document