High-efficiency, Large-area and Color-stable Flexible Organic Light-emitting Diodes using an Ultra-thin Metal Electrode

Author(s):  
Cheng Zhang ◽  
Qingyu Huang ◽  
Qingyu Cui ◽  
Chengang Ji ◽  
Zhong Zhang ◽  
...  
2021 ◽  
Vol 15 (3) ◽  
pp. 208-215 ◽  
Author(s):  
Soon Ok Jeon ◽  
Kyung Hyung Lee ◽  
Jong Soo Kim ◽  
Soo-Ghang Ihn ◽  
Yeon Sook Chung ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Maria Vasilopoulou ◽  
Abd. Rashid bin Mohd Yusoff ◽  
Matyas Daboczi ◽  
Julio Conforto ◽  
Anderson Emanuel Ximim Gavim ◽  
...  

AbstractBlue organic light-emitting diodes require high triplet interlayer materials, which induce large energetic barriers at the interfaces resulting in high device voltages and reduced efficiencies. Here, we alleviate this issue by designing a low triplet energy hole transporting interlayer with high mobility, combined with an interface exciplex that confines excitons at the emissive layer/electron transporting material interface. As a result, blue thermally activated delay fluorescent organic light-emitting diodes with a below-bandgap turn-on voltage of 2.5 V and an external quantum efficiency (EQE) of 41.2% were successfully fabricated. These devices also showed suppressed efficiency roll-off maintaining an EQE of 34.8% at 1000 cd m−2. Our approach paves the way for further progress through exploring alternative device engineering approaches instead of only focusing on the demanding synthesis of organic compounds with complex structures.


2013 ◽  
Vol 14 (8) ◽  
pp. 1939-1945 ◽  
Author(s):  
Philipp Schwamb ◽  
Thilo C.G. Reusch ◽  
Christoph J. Brabec

2011 ◽  
Vol 12 (5) ◽  
pp. 843-850 ◽  
Author(s):  
Chao Cai ◽  
Shi-Jian Su ◽  
Takayuki Chiba ◽  
Hisahiro Sasabe ◽  
Yong-Jin Pu ◽  
...  

Author(s):  
Jingwen Xu ◽  
Xing Wu ◽  
Jingjing Guo ◽  
Zujin Zhao ◽  
Ben Zhong Tang

In comparison with green and red OLEDs, which have well developed with satisfactory electroluminescence (EL) performances, high-efficiency blue OLEDs still need further exploration. Herein, by reasonably strengthening the rigidity of...


2021 ◽  
Vol 314 ◽  
pp. 3-8
Author(s):  
Noel Giebink

Organic optoelectronic devices such as light-emitting diodes and solar cells present unique challenges for surface cleaning and preparation because of their large area and the ‘soft’, thin film nature of the materials involved. This paper gives an introduction to this class of semiconductor devices and covers a recent example of how surface cleaning impacts the long-term reliability of organic light-emitting diodes being commercialized for solid-state lighting.


Sign in / Sign up

Export Citation Format

Share Document