scholarly journals Air quality remote sensing from space in china: progress and prospects

Author(s):  
liangfu Chen ◽  
Jinhua Tao ◽  
Minghui Tao ◽  
Zifeng Wang ◽  
Ying Zhang ◽  
...  
Keyword(s):  
2007 ◽  
Author(s):  
Klaus Schäfer ◽  
Gregor Schürmann ◽  
Carsten Jahn ◽  
Candy Matuse ◽  
Herbert Hoffmann ◽  
...  

2018 ◽  
Vol 3 (1) ◽  
pp. 40-47
Author(s):  
L.A. Akinyemi ◽  
A.A. Periola ◽  
O.O. Shoewu ◽  
A.A. Alonge ◽  
K.A. Ogudo

Atmosphere ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 517 ◽  
Author(s):  
Prakhar Misra ◽  
Ryoichi Imasu ◽  
Wataru Takeuchi

Several studies have found rising ambient particulate matter (PM 2.5 ) concentrations in urban areas across developing countries. For setting mitigation policies source-contribution is needed, which is calculated mostly through computationally intensive chemical transport models or manpower intensive source apportionment studies. Data based approach that use remote sensing datasets can help reduce this challenge, specially in developing countries which lack spatially and temporally dense air quality monitoring networks. Our objective was identifying relative contribution of urban emission sources to monthly PM 2.5 ambient concentrations and assessing whether urban expansion can explain rise of PM 2.5 ambient concentration from 2001 to 2015 in 15 Indian cities. We adapted the Intergovernmental Panel on Climate Change’s (IPCC) emission framework in a land use regression (LUR) model to estimate concentrations by statistically modeling the impact of urban growth on aerosol concentrations with the help of remote sensing datasets. Contribution to concentration from six key sources (residential, industrial, commercial, crop fires, brick kiln and vehicles) was estimated by inverse distance weighting of their emissions in the land-use regression model. A hierarchical Bayesian approach was used to account for the random effects due to the heterogeneous emitting sources in the 15 cities. Long-term ambient PM 2.5 concentration from 2001 to 2015, was represented by a indicator R (varying from 0 to 100), decomposed from MODIS (Moderate Resolution Imaging Spectroradiometer) derived AOD (aerosol optical depth) and angstrom exponent datasets. The model was trained on annual-level spatial land-use distribution and technological advancement data and the monthly-level emission activity of 2001 and 2011 over each location to predict monthly R. The results suggest that above the central portion of a city, concentration due to primary PM 2.5 emission is contributed mostly by residential areas (35.0 ± 11.9%), brick kilns (11.7 ± 5.2%) and industries (4.2 ± 2.8%). The model performed moderately for most cities (median correlation for out of time validation was 0.52), especially when assumed changes in seasonal emissions for each source reflected actual seasonal changes in emissions. The results suggest the need for policies focusing on emissions from residential regions and brick kilns. The relative order of the contributions estimated by this study is consistent with other recent studies and a contribution of up to 42.8 ± 14.1% is attributed to the formation of secondary aerosol, long-range transport and unaccounted sources in surrounding regions. The strength of this approach is to be able to estimate the contribution of urban growth to primary aerosols statistically with a relatively low computation cost compared to the more accurate but computationally expensive chemical transport based models. This remote sensing based approach is especially useful in locations without emission inventory.


2016 ◽  
Vol 119 ◽  
pp. 18004
Author(s):  
Yonghua Wu ◽  
Chowdhury Nazmi ◽  
Zaw Han ◽  
Cuiya Li ◽  
Barry Gross ◽  
...  
Keyword(s):  

Atmosphere ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 516 ◽  
Author(s):  
Robin Smit ◽  
Phil Kingston

The objective of this paper is to use remote sensing to measure on-road emissions and to examine the impact and usefulness of additional measurement devices at three sites. Supplementing remote sensing device (RSD) equipment with additional equipment increased the capture rate by almost 10%. Post-processing of raw data is essential to obtain useful and accurate information. A method is presented to identify vehicles with excessive emission levels (high emitters). First, an anomaly detection method is applied, followed by identification of cold start operating conditions using infrared vehicle profiles. Using this method, 0.6% of the vehicles in the full (enhanced) RSD data were identified as high emitters, of which 35% are likely in cold start mode where emissions typically stabilize to low hot running emission levels within a few minutes. Analysis of NOx RSD data confirms that poor real-world NOx performance of Euro 4/5 light-duty diesel vehicles observed around the world is also evident in Australian measurements. This research suggests that the continued dieselisation in Australia, in particular under the current Euro 5 emission standards and the more stringent NO2 air quality criteria expected in 2020 and 2025, could potentially result in local air quality issues near busy roads.


2021 ◽  
Vol 755 ◽  
pp. 142621
Author(s):  
Chien-Yuan Chen ◽  
Ho Wen Chen ◽  
Chu-Ting Sun ◽  
Yen Hsun Chuang ◽  
Kieu Lan Phuong Nguyen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document