Engineering and Technology Research Journal
Latest Publications


TOTAL DOCUMENTS

51
(FIVE YEARS 38)

H-INDEX

0
(FIVE YEARS 0)

Published By Faculty Of Engineering, Lagos State University, Nigeria

0794-2834

2021 ◽  
Vol 6 (2) ◽  
pp. 48-59
Author(s):  
S.K. Fasogbon ◽  
N.B. Jagunmolu ◽  
A.O. Adeyera ◽  
A.D. Ogunsola ◽  
O.O. Laosebikan

Engine pollutants have been a significant source of concern in most countries around the world because they are one of the major contributors to air pollution, which causes cancer, lung disorders, and other severe illnesses. The need to reduce emissions and its consequences has prompted studies into the emission profile of internal combustion engines running on particular fuels. To this end, this study employed the power of Artificial Neural Networks (ANNs) to investigate the impact of injection timing on the emission profile of Compression Ignition Engines fuelled with blends of Tropical Almond Seed Oil based-biodiesel; by conducting a series of experimental tests on the engine rig and using the results to train the ANNs; to predict the emission profile to full scale. Blend percentages, load percentages, and injection timings were used as input variables, and engine emission parameters were used as output variables, to train the network. The results showed that injection timing affect emission output of CI engines fuelled with Tropical Almond Oil based biodiesel; and for the emission pattern to be friendly, injection timing must rather be retarded and not advanced. The results also showed that for different engine emission parameters, there is a strong association between the ANN output results and the actual experimental values; with mean relative error values less than 10%, which fall within the acceptable limits. For emission of CI engines fuelled with Tropical Almond Oil based biodiesel to be friendly in pattern, injection timing must be relatively retarded. The study also concluded that Artificial Neural Network (ANN) is a reliable tool for predicting Compression Ignition Engines emission profiles.


2021 ◽  
Vol 6 (2) ◽  
pp. 31-39
Author(s):  
S Adetona ◽  
M Iyayi ◽  
R Salawu

The day-to-day increase in electric energy demand with increasing population and urbanization is causing transmission facilities to transfer load at their upper limits; therefore, the probability of failures of these facilities increases. One of the ways of mitigating failures is by constructing more transmission lines; which would serve as alternatives to reduce the transmission line utilization levels (TLUL). However, there are constraints in adopting this method; therefore, the use of Interline Power Flow Controller (IPFC) has been suggested by many researchers; but very few of these studies proposed the IPFC that has capability of handling operating constraints (IPFCthC) in solving power transmission systems issues. Some of the studies that proposed the IPFCthC use trial and error approach in identifying the optimal location for its injection in multi-buses power grid. Also, some of the studies that proposed the IPFCthC do not employ it to investigate its capability in reducing TLUL. In order to reduce the TSUL in the multi-bus grid, this paper therefore proposes optimal location for the injection of IPFCthC using Transmission Line Performance Index (TLPI) and Transmission Line Reactive Power Loss (TLRPL) in Newton-Raphson Load Flow (NRLF) algorithm. The proposed algorithm was tested on IEEE-30 Test-bed in Matlab environment. The results obtained reveal that the TLUL of each of the transmission lines of the Test-bed that is not connected to PV bus is reduced averagely by 4.00 % each, with the injection of the IPFCthC in an optimally location established by the proposed algorithm.


2021 ◽  
Vol 6 (2) ◽  
pp. 7-15
Author(s):  
T.O. Rabiu ◽  
N.A. Folami ◽  
N.A. Badiru ◽  
N.A. Kinghsley ◽  
B.T. Dare ◽  
...  

The ever-growing concern for the safety of lives and the environment as well as the depletion in fossil fuels reserves across the globe has led to the keen interests of many researchers in the field of renewable energy. This study was therefore undertaken to investigate the trans-esterification optimization process for biodiesel production from palm kernel using response surface methodology. The materials for the trans-esterification processes were palm kernel oil, Methanol and sodium hydroxide. The effects of reaction temperature (oC), catalyst concentration (wt%) and reaction time (min) on the yield were evaluated. The properties of the biodiesel produced showed that it met the ASTM standard for biodiesel. A quadratic polynomial model, Yield (%) = 78.60–3.12A–.62B + 0.00C -0.75AB – 3.50AC + 1.50BC + 2.82A2– 0.18B2 + 1.08C2, was developed that can be used to predict yield of biodiesel at any value of the different parameters investigated. The ANOVA for the model of the biodiesel yield obtained indicates that the models fit well in describing the relationship between the predictor (biodiesel yield) and the factors (methanol to oil ratio, catalyst concentration and reaction time). The optimal trans-esterification conditions were found to be 60°C for temperature, 60minutes for reaction time, 0.878w% of oil as Sodium hydroxide (catalyst) concentration and methanol/oil ratio of 1:6. At these optimal conditions, the biodiesel yield was fond to be 89.32% The generated biodiesel had high cetane number, better engine ignitability and poses lesser pollution problems than petroleum diesel.


2021 ◽  
Vol 6 (2) ◽  
pp. 40-47
Author(s):  
S Igbafe ◽  
A.A. Azuokwu ◽  
A.I. Igbafe

Sequel to the environmental problems of the none biodegradable nature of the conventional oil-based drilling fluids, it is imperative and urgent for environmental sustainability and for the development of eco-friendly products, that use of petroleum diesel oil as the continuous phase of drilling mud warrant urgent reconsideration. Towards the search to provide a better alternative to petroleum diesel oil as a base oil for drilling mud, vegetable oil from the inedible seeds of the African star apple fruits, was examined In this study, an oil-based drilling mud (OBM) with biodegradable qualities for sustainable environmental applications was developed and characterized. The OBM was produced with chrysophyllum albidum (African star apple) oil methyl ester bio-lubricant to replace petroleum diesel as the continuous phase of the mud. The chrysophyllum albidum oil methyl ester was synthesized from fatty acid methyl ester obtained through transesterification process of none edible oils extracted from chrysophyllum albidum seeds. Tests of physiochemical and rheological properties were carried out on mud samples of chrysophyllum albidum oil biolube-based mud (CAOBBM) and petroleum diesel oil-based mud (PDOBM) to characterise the fluids for performance evaluation and environmental consequences. The findings indicated that CAOBBM was lower in density and less acidic than PDOBM, at barite content of 20 g. Also, CAOBBM had lower viscosity which implies less resistance to flow and lower pressure losses. The low oil to water ratio from the filtration loss test, revealed that CAOBBM is more viable to low fluid loss and consequently enhances wellbore stability and less oil retained on drilled cuttings. Similarly, toxicity test confirmed CAOBBM to be more appropriate and less detrimental to the environment compared to PDOBM. Summarily chrysophyllum albidum oil biolube based muds stands safer and more eco-friendly for a sustainable environment than petroleum diesel oil-based muds.


2021 ◽  
Vol 6 (2) ◽  
pp. 24-30
Author(s):  
T.N. Guma ◽  
J.O. Akporhuarho

Industrial robots are used in more advanced automation to effectuate manufacturing with far greater speed, efficiency, safety, guaranteed consistency, and reliability than human processing. Countries that employ automation technologies are leaders in industrial manufacturing and contributions to economy. Developing countries like the ones in Africa are seen to hardly use automation technologies in industrial processing. Nigeria is the largest economy in Africa but her industrial base and development is very low. Many industries in Nigeria and other less developed economies face challenges in transitioning to application of automation technologies due mainly to either lack of awareness, costs, and shortage of manning personnel. Industries noted or suspected to be employing robotic technology in Nigeria were visited or contacted to know the realities. Findings indicated that only few Nigerian industries especially breweries employ robots in manufacturing in the country. Detailed survey of Nigerian Breweries factory in Kaduna metropolis as a notable manufacturing outfit employing industrial robots in Nigeria was conducted. The survey indicated that three robots named the packer, unpacker, and palletizer are employed at the company for removing, arranging, and placing about 25,000 empty glass bottles per hour either from or into crates on beer production lines before and after the bottles are washed or treated. These activities which can also be done manually were estimated to require more than 100 dedicated workers to accomplish every workday at the company. It was also evidential that the robots had greatly being contributing to productivity, quality, safety, and timely delivery of the factory products to customers with greater sale and profitability profile of the Breweries Company. The survey is intended to practically substantiate the technological option of employing robots to boost industrial manufacturing profiles and returns and contributions to economy in less developed countries.


2021 ◽  
Vol 6 (2) ◽  
pp. 16-23
Author(s):  
R.I. Salawu ◽  
S.O. Adetona

All vehicles require liquid to move from one point to the other; and it is necessary for the driver of the vehicle to ascertain the volume (level) of the liquid in the tank before setting out on a journey, hence the need to know the level of the liquid in the tank. This paper therefore presents modeling and simulation of a sensory device, which evaluates the volume VLQD of any type of liquid in any type of a closed container that has a cross-sectional area A (m2) and height h (m). The main attraction of the approach is that it does not get in touch with the liquid, its simplicity and lower cost. The aim is achieved by using a sensor, Light Dependent Resistor (LDR); which operates on a principle which states that the voltage ELUX in Volts across a LDR is a function of luminance it receives from a light source, Light Emitting Diode (LED). This principle and a power function developed using experimental data were used to model VLQD; which reveals that VLQD in litres is a function of ELUX in Volts. The model of VLQD was simulated for the sake of validation in the Proteus 8.9 professional environment. The results obtained revealed that the proposed model correctly indicated the VLQD in litres in a closed container that its A (m2) and h (m) are known and specified in the model.


2021 ◽  
Vol 6 (1) ◽  
pp. 30-33
Author(s):  
E.O. Awotona ◽  
A.O. Alade ◽  
S.A. Adebanjo ◽  
O. Duduyemi ◽  
T.J. Afolabi

Drying of bambara beans was studied at 40oC at every 30 minutes in a Laboratory oven. Effective moisture diffusivity ranges between 5.886 x 10-10 m2/s – 4.354 x 10-10 m2/s respectively. The statistical criteria used in evaluation of the model were maximum coefficient of determination R2 and minimum root mean square error [RMSE]. Determination for goodness of fit statistics for drying of the beans was carried out. Midilli model was used to predict the drying curve. The Midili model was found to produce accurate predictions for all the four varieties of bambara beans and the model was shown to be an excellent model for predicting drying behavior of TVSU-47 and the R2 value was 0.9971 and the value of root mean square error was 0.0149 respectively.


2021 ◽  
Vol 6 (1) ◽  
pp. 50-62
Author(s):  
K.F.K. Oyedeko ◽  
A.S. Akinyanju ◽  
M.K. Lasisi ◽  
R.J. Patinvoh

Textile effluent contains different organic and inorganic pollutants, among these are COD and heavy metals such as lead (Pb), chromium (Cr), cadium (Cd), and copper (Cu) used for the production of color pigments. In this study the adsorption capacity of chitosan produced from snail shells as an adsorbent for the treatment of textile effluent and for the removal of lead (Pb2+) from waste water carried out. Batch experiments were performed to study the treatment of textile waste water and the adsorption of lead Pb2+ion unto chitosan. The effect of various experimental parameters (adsorbent dose, contact time and temperature) was studied, and optimal conditions were determined. Batch adsorption study on textile waste water showed 96.9 % COD removal was achieved for carbon dosage of 15mg carbon/100ml of textile wastewater solution. The equilibrium data were analyzed with Langmuir, Freundlich, Temkin, Elovich, Florry Huggins, Jovanovic, Harkin Jura and Dubinin–Radushkevich (DRK) adsorption models. Freundlich isotherm yielded the best fit to the experimental equilibrium adsorption data with a correlation coefficient (R2 ) of 0.991. The adsorption intensity is 1.68. This was closely followed by Langmuir Isotherm with a correlation coefficient (R2 ) of is 0.943. The maximum monolayer coverage (Qo) from Langmuir isotherm model was determined to be 50.51mg/g, KL (Langmuir isotherm constant) is 0.00374L/mg, RL (the separation factor) is 0.217 indicating that the equilibrium sorption was favorable. Adsorption kinetics data for sorption of Pb2+ion unto chitosan were analyzed using the pseudo first order, pseudo second order and intra particle diffusion models. The results indicated that the adsorption kinetic data were best described by pseudo secondorder model. For the thermodynamic studies, the enthalpy change, ΔH°, and the entropy change, ΔS°, for the adsorption processes are -18.10 kJ/mol and -0.0652KJ/mol K respectively. The free energy, ΔG° for the process are 2186.39 J/mol, 3071.761 J/mol, 3689.615J/mol and 4153.032 J/mol at 303K, 313K, 323 K and 333K respectively. The results of thermodynamic parameters evaluated showed that the process was non spontaneous and exothermic in nature. The results show that chitosan can be used as an alternative low-cost adsorbent for treatment of textile effluent and the removal of COD and lead from wastewater.


2021 ◽  
Vol 6 (1) ◽  
pp. 39-49
Author(s):  
O.K. Adejumobi ◽  
M.A. Adedoyin ◽  
A.A. Adenowo ◽  
O.O. Shoewu ◽  
A.I.O. Yussuff

The concept of attendance monitoring has since evolved to become an integral part of every functional society. Today, in most educational institutions, students’ attendance is being taken manually by lecturers on paper-based attendance registers. However, this method is time-consuming, inaccurate and may not be available for analysis when needed because the collected data has not been stored in any database. Hence, in this paper, a fingerprintbased, wireless students’ attendance system using C# and MYSQL is developed to address the problem of truancy, human error in taking attendance and impersonation. Also, a fingerprint device with the Graphical User Interface (GUI) is modelled using C#, which was used for both enrolment and verification while MYSQL was used to model the database. The Simple Mail Transfer Protocol (SMTP) is then used to send the PDF version of the attendance records to relevant stakeholders to ascertain the students’ levels of attendance. The developed system is simple, secure and cost-effective to implement. The developed system worked efficiently when experimented.


2020 ◽  
Vol 5 (2) ◽  
pp. 93-100
Author(s):  
R.O. Kuku ◽  
O.A. Adefuye ◽  
O.L. Fadipe ◽  
G.I. Adebowale ◽  
O.M. Delogan

The need for new designs of Groundnut oil expeller is based on the cost and efficiency of the machine especially for the usage in small and medium size industries. It has to be cost effective and light weight to accommodate such demands. The existing Groundnut Oil Expellers in the market are too big and too expensive for these small medium size businesses to invest on. Other limitations are its maintenances aspect as well as its operations. Therefore, series of survey and research have been done to identify the needs and base on that, the Final Design and Specifications were synthesized. The Groundnut Oil Expeller is a screw type machine, which presses groundnut through a barrel-like cavity. Raw material (groundnut) enters one side of the press and by product (cake) exit the other side. The machine uses friction and continuous pressure from the screw drives to move and compress the groundnut. The oil seeps through small openings that do not allow groundnut fibre solids to pass through. Afterward, the pressed groundnuts are formed into a hardened cake, which is removed from the machine. This machine will satisfy the demand for the small and medium size industries because of its design, functionality and price. The measurements of the performance also being analyze by calculating the design efficiency.


Sign in / Sign up

Export Citation Format

Share Document