Optical rectangular waveguide in titanium-diffused lithium niobate having its optical axis in the transverse plane

1982 ◽  
Vol 72 (11) ◽  
pp. 1514 ◽  
Author(s):  
Mario N. Armenise ◽  
Marco De Sario
2020 ◽  
Vol 44 (4) ◽  
pp. 561-567
Author(s):  
A.G. Nalimov

A force and a torque exerted on an elliptical dielectric particle in the focus of a spherical circularly polarized laser beam are considered. The numerical simulation is conducted using a diffraction field obtained by an FDTD method, with the force and torque derived using a Maxwell’s stress tensor. It is shown that an optical torque is exerted on the center of an elliptical particle put in the focus of a circularly polarized spherical wave, making it rotate around the optical axis. The rotation occurs when the elliptical microparticle is situated in a transverse plane to the optical axis. When shifting the ellipsoid from the optical axis, an optical trapping force appears that prevents its displacement, meaning that the particle finds itself in an optical trap on the optical axis.


Photonics ◽  
2021 ◽  
Vol 8 (6) ◽  
pp. 190
Author(s):  
Alexey A. Kovalev ◽  
Victor V. Kotlyar ◽  
Darya S. Kalinkina

We studied paraxial light beams, obtained by a continuous superposition of off-axis Gaussian beams with their phases chosen so that the whole superposition is invariant to free-space propagation, i.e., does not change its transverse intensity shape. Solving a system of five nonlinear equations for such superpositions, we obtained an analytical expression for a propagation-invariant off-axis elliptic Gaussian beam. For such an elliptic beam, an analytical expression was derived for the orbital angular momentum, which was shown to consist of two terms. The first one is intrinsic and describes the momentum with respect to the beam center and is shown to grow with the beam ellipticity. The second term depends parabolically on the distance between the beam center and the optical axis (similar to the Steiner theorem in mechanics). It is shown that the ellipse orientation in the transverse plane does not affect the normalized orbital angular momentum. Such elliptic beams can be used in wireless optical communications, since their superpositions do not interfere in space, if they do not interfere in the initial plane.


Author(s):  
W.A. Carrington ◽  
F.S. Fay ◽  
K.E. Fogarty ◽  
L. Lifshitz

Advances in digital imaging microscopy and in the synthesis of fluorescent dyes allow the determination of 3D distribution of specific proteins, ions, GNA or DNA in single living cells. Effective use of this technology requires a combination of optical and computer hardware and software for image restoration, feature extraction and computer graphics.The digital imaging microscope consists of a conventional epifluorescence microscope with computer controlled focus, excitation and emission wavelength and duration of excitation. Images are recorded with a cooled (-80°C) CCD. 3D images are obtained as a series of optical sections at .25 - .5 μm intervals.A conventional microscope has substantial blurring along its optical axis. Out of focus contributions to a single optical section cause low contrast and flare; details are poorly resolved along the optical axis. We have developed new computer algorithms for reversing these distortions. These image restoration techniques and scanning confocal microscopes yield significantly better images; the results from the two are comparable.


Author(s):  
M. Strojnik

Magnetic lenses operating in partial saturation offer two advantages in HVEM: they exhibit small cs and cc and their power depends little on the excitation IN. Curve H, Fig. 1, shows that the maximal axial flux density Bz max of one of the lenses investigated changes between points (3) and (4) by 5% as the excitation varies by 40%. Consequently, the designer can relax the requirements concerning the stability of the lens current supplies. Saturated lenses, however, can only be used if (i) unwanted fields along the optical axis can be controlled, (ii) 'wobbling' of the optical axis due to inhomogeneous saturation around the pole piece faces is prevented, (iii) ample ampere-turns can be squeezed into the space available, and (iv) the lens operating point covers a sufficient range of accelerating voltages.


Sign in / Sign up

Export Citation Format

Share Document