scholarly journals Semiclassical scattering of an electric dipole source inside a spherical particle

2001 ◽  
Vol 18 (12) ◽  
pp. 3085 ◽  
Author(s):  
James A. Lock
Geophysics ◽  
1993 ◽  
Vol 58 (2) ◽  
pp. 198-214 ◽  
Author(s):  
Martyn J. Unsworth ◽  
Bryan J. Travis ◽  
Alan D. Chave

A numerical solution for the frequency domain electromagnetic response of a two‐dimensional (2-D) conductivity structure to excitation by a three‐dimensional (3-D) current source has been developed. The fields are Fourier transformed in the invariant conductivity direction and then expressed in a variational form. At each of a set of discrete spatial wavenumbers a finite‐element method is used to obtain a solution for the secondary electromagnetic fields. The finite element uses exponential elements to efficiently model the fields in the far‐field. In combination with an iterative solution for the along‐strike electromagnetic fields, this produces a considerable reduction in computation costs. The numerical solutions for a horizontal electric dipole are computed and shown to agree with closed form expressions and to converge with respect to the parameterization. Finally some simple examples of the electromagnetic fields produced by horizontal electric dipole sources at both the seafloor and air‐earth interface are presented to illustrate the usefulness of the code.


1975 ◽  
Vol 53 (6) ◽  
pp. 598-609 ◽  
Author(s):  
V. Ramaswamy ◽  
H. W. Dosso

Analytical solutions for the low frequency electromagnetic fields of a dipole source situated in the lower layer of a two layer conductor are derived. The sources considered are a vertical electric dipole, a horizontal electric dipole, and a horizontal magnetic dipole. The numerical results discussed in this paper describe the general behavior of the electric and magnetic fields for various upper layer conductivities, upper layer thickness, and source depths. The results are of interest in the application of electromagnetic techniques to locate miners trapped underground following a mine disaster.


Author(s):  
А.И. Грачев

AbstractImplementation of the well-known phenomenon of Quincke rotation is proposed, which may be called the “photoinduced Quincke rotation (PIQR) effect.” The PIQR effect is based on the previously discovered phenomenon of rotation of a spherical particle in a stationary electric field under continuous irradiation inducing an electric dipole moment in the particle.


2021 ◽  
Vol 2015 (1) ◽  
pp. 012027
Author(s):  
Adrià Canós Valero

Abstract Recently, the physical significance of dynamic toroidal multipoles in the context of electrodynamics has been put under discussion. Indeed, the latter can be shown to arise simply from a Taylor series of the exact source (Cartesian) multipole moments. The split into elementary and toroidal parts was demonstrated to lead to an unphysical result were forbidden components of the momentum transform of the current could radiate into free space. In this contribution, we elaborate the conditions that a current distribution must necessarily satisfy to be considered a ‘pure’ toroidal dipole source. We demonstrate for the first time that symmetry prevents such current distribution to radiate as an elementary electric dipole moment, without leading to an unphysical result. Thus, while both elementary electric dipole and toroidal dipoles are indistinguishable outside the source, they display topologically distinct characteristics within the smallest spherical surface enclosing the source itself and have different physical origin. Based on our results, a pure ‘toroidal’ source can be designed. We believe the outcome of our investigations will help clarify further the formal meaning of the toroidal multipoles.


Geophysics ◽  
2014 ◽  
Vol 79 (6) ◽  
pp. E341-E351 ◽  
Author(s):  
Andrei Swidinsky

The frequency-domain electromagnetic response of a confined conductor buried in a resistive host has received much attention, particularly in the context of mineral exploration. In contrast, the problem of the electromagnetic response of a confined resistor buried in a conductive host has been less thoroughly studied. However, resistive targets are important in geotechnical and hydrologic studies, archaeological prospecting, and, more recently, offshore hydrocarbon exploration. I analytically address the problem of the electromagnetic response of a completely resistive cylindrical cavity buried in a conductive host in the presence of a simplified 2D electric dipole source. In contrast to the confined conductor, which channels and induces current systems, the confined resistor deflects current and produces additional eddy current systems in the conductive host. I apply this theory to model the response of a grounded electric dipole-dipole system operating over a range of frequencies from 0 Hz to 10 kHz, in the presence of a horizontal 5-m radius insulating cylinder located 1-m beneath the surface of a uniform earth. This represents a common hazard encountered during mining and civil engineering operations. Results show that such an insulating cavity increases the recorded electric field amplitude and phase delay at all transmitted frequencies. These observations suggest that a broadband electromagnetic prospecting system may provide additional information about the location and extent of a void, over and above a standard dipole-dipole resistivity survey. When the host skin depth is much larger than all other length scales, the response can be approximated by an equivalent single dipole unless the cylinder’s radius is much larger than its distance from the transmitter. This result provids a useful rule of thumb to determine the acceptable range over which a resistive target can be modeled by a distribution of dipoles.


Author(s):  
Ya Gao ◽  
Qing-Yun Di ◽  
Ruo Wang ◽  
Chang-Min Fu ◽  
Peng-Fei Liang ◽  
...  

2014 ◽  
Vol 29 (24) ◽  
pp. 1450132 ◽  
Author(s):  
Ofek Birnholtz ◽  
Shahar Hadar ◽  
Barak Kol

The aim of this paper is to highlight a recently proposed method for the treatment of classical radiative effects, in particular radiation reaction, via effective field theory methods. We emphasize important features of the method and in particular the doubling of fields. We apply the method to two simple systems: a mass–rope system and an electromagnetic charge-field system. For the mass–rope system in 1 + 1 dimensions we derive a double-field effective action for the mass which describes a damped harmonic oscillator. For the EM charge-field system, i.e. the system of an accelerating electric charge in 3 + 1 dimensions, we show a reduction to a 1 + 1 dimensions radial system of an electric dipole source coupled to an electric dipole field (analogous to the mass coupled to the rope). For this system we derive a double-field effective action and reproduce in an analogous way the leading part of the Abraham–Lorentz–Dirac force.


Sign in / Sign up

Export Citation Format

Share Document