Reverse saturable absorption of C_60 in liquids irradiated by picosecond and nanosecond laser pulses

1996 ◽  
Vol 13 (12) ◽  
pp. 2801 ◽  
Author(s):  
V. V. Golovlev ◽  
W. R. Garrett ◽  
C. H. Chen
1997 ◽  
Vol 479 ◽  
Author(s):  
M. Brunel ◽  
F. Chaput ◽  
S. A. Vinogradov ◽  
B. Campagne ◽  
M. Canva ◽  
...  

AbstractPd and Zn - tetraphenyltetrabenzoporphyrins (PdTPTBP and ZnTPTBP), hexacyanin 3 (HITCI), and substituted phthalocyanines were incorporated in solid-state matrices (xerogels) using a sol-gel process. Nonlinear reverse saturable absorption was observed with those materials when they were illuminated with nanosecond laser pulses at 532 nm, or other wavelengths in the visible spectrum (between 450 nm and 630 nm). PdTPTBP doped xerogels exhibit a nonlinear activation threshold of about 10 mJ/cm , which is much lower than the value of 80 mJ/cm2 obtained under similar conditions with classical Al phthalocyanine chloride, or HITCI molecules. Solid state “red active” reverse saturable absorbers can be obtained with substituted phthalocyanines doped xerogels. The different experimental results are discussed using classical 4- energy level diagrams.


2010 ◽  
Vol 97-101 ◽  
pp. 3803-3806
Author(s):  
Yong Xiang Hu ◽  
Heng Zhang ◽  
Zheng Qiang Yao

Laser interference micro-structuring is a relatively efficient and cost-effective technique for fabricating periodical micro-nano-structuring surfaces. The direct fabrication of sub-micron sized dot array on silicon was performed by four interfering nanosecond laser beams with a diffractive beam splitter. The mechanism to form the dot array was analyzed and it was found that the obtained conical dot array had a negative shape of the interference pattern of four laser beams. A second-order peak between two first-order peaks also occurred due to the liquid-solid expansion.


2020 ◽  
Vol 21 (2) ◽  
pp. 215-218
Author(s):  
I. A. Mohylyak ◽  
O. Yu. Bonchyk ◽  
S. A. Korniy ◽  
S. G. Kiyak ◽  
D. I. Popovych

Experimental studies of the features of the formation of laser-induced periodic nanostructures on the surface of silicon wafers in the zones of action of second, millisecond and nanosecond laser pulses are conducted in the work. The results of microscopic investigations by optical and electron microscopes of periodic structures formed on surfaces with crystallographic orientation (111), (100) are presented. The obtained results can be used to optimize the laser pulse mode for controlled micro- nanostructuring of the semiconductor surface.


Sign in / Sign up

Export Citation Format

Share Document