scholarly journals Antireflective silicon surface with vertical-aligned silicon nanowires realized by simple wet chemical etching processes

2011 ◽  
Vol 19 (17) ◽  
pp. 15792 ◽  
Author(s):  
Yung-Jr Hung ◽  
San-Liang Lee ◽  
Kai-Chung Wu ◽  
Yian Tai ◽  
Yen-Ting Pan
2007 ◽  
Vol 62 (11) ◽  
pp. 1411-1421 ◽  
Author(s):  
Sebastian Patzig ◽  
Gerhard Roewer ◽  
Edwin Kroke ◽  
Ingo över

Solutions consisting of HF - NOHSO4 - H2SO4 exhibit a strong reactivity towards crystalline silicon which is controlled by the concentrations of the reactive species HF and NO+. Selective isotropic and anisotropic wet chemical etching with these solutions allows to generate a wide range of silicon surface morphology patterns. Traces of Ag+ ions stimulate the reactivity and lead to the formation of planarized (polished) silicon surfaces. Analyses of the silicon surface, the etching solution and the gas phase were performed with scanning electron microscopy (SEM), DR/FT-IR (diffusive reflection Fourier transform infra-red), FT-IR, Raman and NMR spectroscopy, respectively. It was found that the resulting silicon surface is hydrogen-terminated. The gas phase contains predominantly SiF4, NO and N2O. Furthermore, NH4+ is produced in solution. The study has confirmed the crucial role of nitrosyl ions for isotropic wet chemical etching processes. The novel etching system is proposed as an effective new way for selective surface texturing of multi- and monocrystalline silicon. A high etching bath service lifetime, besides a low contamination of the etching solution with reaction products, provides ecological and economical advantages for the semiconductor and solar industry.


2017 ◽  
Vol 2 (33) ◽  
pp. 10865-10870 ◽  
Author(s):  
Chien-Hsin Tang ◽  
Wen-Jin Li ◽  
Chia-Hsiang Hung ◽  
Po-Hsuan Hsiao ◽  
Chia-Yun Chen

2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Chien-Wei Liu ◽  
Chin-Lung Cheng ◽  
Bau-Tong Dai ◽  
Chi-Han Yang ◽  
Jun-Yuan Wang

Nanostructured solar cells with coaxial p-n junction structures have strong potential to enhance the performances of the silicon-based solar cells. This study demonstrates a radial junction silicon nanowire (RJSNW) solar cell that was fabricated simply and at low cost using wet chemical etching. Experimental results reveal that the reflectance of the silicon nanowires (SNWs) declines as their length increases. The excellent light trapping was mainly associated with high aspect ratio of the SNW arrays. A conversion efficiency of ∼7.1% and an external quantum efficiency of ∼64.6% at 700 nm were demonstrated. Control of etching time and diffusion conditions holds great promise for the development of future RJSNW solar cells. Improving the electrode/RJSNW contact will promote the collection of carries in coaxial core-shell SNW array solar cells.


2011 ◽  
Vol 511 (1-3) ◽  
pp. 106-109 ◽  
Author(s):  
Meiguang Zhu ◽  
Xuejiao Chen ◽  
Zhiliang Wang ◽  
Yun Chen ◽  
Dianfei Ma ◽  
...  

2011 ◽  
Vol 208 (4) ◽  
pp. 893-899 ◽  
Author(s):  
Felix Voigt ◽  
Vladimir Sivakov ◽  
Viktor Gerliz ◽  
Gottfried H. Bauer ◽  
Björn Hoffmann ◽  
...  

Author(s):  
Dongmei Meng ◽  
Joe Rupley ◽  
Chris McMahon

Abstract This paper presents decapsulation solutions for devices bonded with Cu wire. By removing mold compound to a thin layer using a laser ablation tool, Cu wire bonded packages are decapsulated using wet chemical etching by controlling the etch time and temperature. Further, the paper investigates the possibilities of decapsulating Cu wire bonded devices using full wet chemical etches without the facilitation of laser ablation removing much of mold compound. Additional discussion on reliability concerns when evaluating Cu wirebond devices is addressed here. The lack of understanding of the reliability of Cu wire bonded packages creates a challenge to the FA engineer as they must develop techniques to help understanding the reliability issue associated with Cu wire bonding devices. More research and analysis are ongoing to develop appropriate analysis methods and techniques to support the Cu wire bonding device technology in the lab.


Small ◽  
2020 ◽  
Vol 16 (51) ◽  
pp. 2007045
Author(s):  
Mei Sun ◽  
Bocheng Yu ◽  
Mengyu Hong ◽  
Zhiwei Li ◽  
Fengjiao Lyu ◽  
...  

Author(s):  
Albert Grau-Carbonell ◽  
Sina Sadighikia ◽  
Tom A. J. Welling ◽  
Relinde J. A. van Dijk-Moes ◽  
Ramakrishna Kotni ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document