scholarly journals Adaptive noise reduction method for DSPI fringes based on bi-dimensional ensemble empirical mode decomposition

2011 ◽  
Vol 19 (19) ◽  
pp. 18207 ◽  
Author(s):  
Yi Zhou ◽  
Hongguang Li
2012 ◽  
Vol 518-523 ◽  
pp. 3887-3890 ◽  
Author(s):  
Wei Chen ◽  
Shang Xu Wang ◽  
Xiao Yu Chuai ◽  
Zhen Zhang

This paper presents a random noise reduction method based on ensemble empirical mode decomposition (EEMD) and wavelet threshold filtering. Firstly, we have conducted spectrum analysis and analyzed the frequency band range of effective signals and noise. Secondly, we make use of EEMD method on seismic signals to obtain intrinsic mode functions (IMFs) of each trace. Then, wavelet threshold noise reduction method is used on the high frequency IMFs of each trace to obtain new high frequency IMFs. Finally, reconstruct the desired signal by adding the new high frequency IMFs on the low frequency IMFs and the trend item together. When applying our method on synthetic seismic record and field data we can get good results.


Entropy ◽  
2018 ◽  
Vol 21 (1) ◽  
pp. 11 ◽  
Author(s):  
Guohui Li ◽  
Qianru Guan ◽  
Hong Yang

Owing to the problems that imperfect decomposition process of empirical mode decomposition (EMD) denoising algorithm and poor self-adaptability, it will be extremely difficult to reduce the noise of signal. In this paper, a noise reduction method of underwater acoustic signal denoising based on complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN), effort-to-compress complexity (ETC), refined composite multiscale dispersion entropy (RCMDE) and wavelet threshold denoising is proposed. Firstly, the original signal is decomposed into several IMFs by CEEMDAN and noise IMFs can be identified according to the ETC of IMFs. Then, calculating the RCMDE of remaining IMFs, these IMFs are divided into three kinds of IMFs by RCMDE, namely noise-dominant IMFs, real signal-dominant IMFs, real IMFs. Finally, noise IMFs are removed, wavelet soft threshold denoising is applied to noise-dominant IMFs and real signal-dominant IMFs. The denoised signal can be obtained by combining the real IMFs with the denoised IMFs after wavelet soft threshold denoising. Chaotic signals with different signal-to-noise ratio (SNR) are used for denoising experiments by comparing with EMD_MSE_WSTD and EEMD_DE_WSTD, it shows that the proposed algorithm has higher SNR and smaller root mean square error (RMSE). In order to further verify the effectiveness of the proposed method, which is applied to noise reduction of real underwater acoustic signals. The results show that the denoised underwater acoustic signals not only eliminate noise interference also restore the topological structure of the chaotic attractors more clearly, which lays a foundation for the further processing of underwater acoustic signals.


2013 ◽  
Vol 06 (02) ◽  
pp. 1350009 ◽  
Author(s):  
OLEG O. MYAKININ ◽  
DMITRY V. KORNILIN ◽  
IVAN A. BRATCHENKO ◽  
VALERIY P. ZAKHAROV ◽  
ALEXANDER G. KHRAMOV

In this paper, the new method for OCT images denoizing based on empirical mode decomposition (EMD) is proposed. The noise reduction is a very important process for following operations to analyze and recognition of tissue structure. Our method does not require any additional operations and hardware modifications. The basics of proposed method is described. Quality improvement of noise suppression on example of edge-detection procedure using the classical Canny's algorithm without any additional pre- and post-processing operations is demonstrated. Improvement of raw-segmentation in the automatic diagnostic process between a tissue and a mesh implant is shown.


Sign in / Sign up

Export Citation Format

Share Document