scholarly journals Low-frequency phase measurement with high-frequency squeezing

2012 ◽  
Vol 20 (16) ◽  
pp. 18173 ◽  
Author(s):  
Zehui Zhai ◽  
Jiangrui Gao
2017 ◽  
Vol 110 (2) ◽  
pp. 021106 ◽  
Author(s):  
Fang Liu ◽  
Yaoyao Zhou ◽  
Juan Yu ◽  
Jiale Guo ◽  
Yang Wu ◽  
...  

2012 ◽  
Vol 468-471 ◽  
pp. 826-830 ◽  
Author(s):  
Ya Min Xing ◽  
Sheng Hu Liu ◽  
Dong Xu Wang

A kind of piezoelectricity acceleration geophone is studied and discussed. carried on its amplitude frequency, phase-frequency characteristic theoretically, obtained the primary factor of the influence on frequency response, and improved in the piezoelectric crystal choice and geophone structure. The theory and the field test result indicated that, this piezoelectricity acceleration geophone has better response characteristic on low frequency and the high-frequency as well as a higher sensitivity, it is one better detection method.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Jessica K Nadalin ◽  
Louis-Emmanuel Martinet ◽  
Ethan B Blackwood ◽  
Meng-Chen Lo ◽  
Alik S Widge ◽  
...  

Cross frequency coupling (CFC) is emerging as a fundamental feature of brain activity, correlated with brain function and dysfunction. Many different types of CFC have been identified through application of numerous data analysis methods, each developed to characterize a specific CFC type. Choosing an inappropriate method weakens statistical power and introduces opportunities for confounding effects. To address this, we propose a statistical modeling framework to estimate high frequency amplitude as a function of both the low frequency amplitude and low frequency phase; the result is a measure of phase-amplitude coupling that accounts for changes in the low frequency amplitude. We show in simulations that the proposed method successfully detects CFC between the low frequency phase or amplitude and the high frequency amplitude, and outperforms an existing method in biologically-motivated examples. Applying the method to in vivo data, we illustrate examples of CFC during a seizure and in response to electrical stimuli.


1995 ◽  
Vol 48 (6) ◽  
pp. 971 ◽  
Author(s):  
Andrew J Stevenson ◽  
Malcolm B Gray ◽  
Charles C Harb ◽  
David E McClelland ◽  
Hans-A Bachor

Optical intensity noise in a light source easily degrades the sensitivity of a shot-noise-limited interferometer which is directly detecting low frequency phase or displacement variations. In this paper we describe and compare two experimental methods in which we use high frequency optical phase modulation to shift low frequency phase signals in an interferometer to a shot noise limited region of the photocurrent spectrum. This phase modulation is applied either within the interferometer arms-internal modulation-or in a local oscillator beam tapped off the main interferometer and coherently recombined with the interferometer output-external modulation. he photocurrent is mixed electronically with the high frequency modulating waveform to extract the signal information free from laser intensity noise. In our experiments, we have been able to detect interferometrically low frequency signals with true shot-noise-limited sensitivity. We find, theoretically and experimentally, that the interferometric sensitivity achievable in each scheme depends critically on non-ideal factors, such as imperfect interferometric fringe contrast and electronic noise in the detectors or amplifiers. This paper examines the relative merits and operating requirements of both modulation schemes in practical interferometers.


Author(s):  
Hiroaki Hashimoto ◽  
Hui Ming Khoo ◽  
Takufumi Yanagisawa ◽  
Naoki Tani ◽  
Satoru Oshino ◽  
...  

AbstractObjectiveHigh-frequency activities (HFAs) and phase-amplitude coupling (PAC) are gaining attention as key neurophysiological biomarkers for studying human epilepsy. We aimed to clarify and visualize how HFAs are modulated by the phase of low-frequency bands during seizures.MethodsWe used intracranial electrodes to record seizures of symptomatic focal epilepsy (15 seizures in seven patients). Ripples (80–250 Hz), as representative of HFAs, were evaluated along with PAC. The synchronization index (SI), representing PAC, was used to analyze the coupling between the amplitude of ripples and the phase of lower frequencies. We created a video in which the intracranial electrode contacts were represented by circles that were scaled linearly to the power changes of ripple.ResultsThe main low frequency band modulating ictal-ripple activities was the θ band (4–8 Hz), and after completion of ictal-ripple burst, δ (1–4 Hz)-ripple PAC occurred. The video showed that fluctuation of the diameter of these circles indicated the rhythmic changes during significant high values of θ-ripple PAC.ConclusionsWe inferred that ripple activities occurring during seizure evolution were modulated by θ rhythm. In addition, we concluded that rhythmic circles’ fluctuation presented in the video represents the PAC phenomenon. Our video is thus a useful tool for understanding how ripple activity is modulated by the low-frequency phase in relation with PAC.


1999 ◽  
Vol 42 (3) ◽  
Author(s):  
G. Alguacil ◽  
J. C. Almendros ◽  
E. Del Pezzo ◽  
A. Garcia ◽  
J. M. Ibañez ◽  
...  

Deception Island - South Shetlands, Antarctica is site of active volcanism. Since 1988 field surveys have been carried out with the aim of seismic monitoring, and in 1994 a seismic array was set up near the site of the Spanish summer base in order to better constrain the source location and spectral properties of the seismic events related to the volcanic activity. The array was maintained during the Antarctic summer of 1995 and the last field survey was carried out in 1996. Data show the existence of three different groups (or families) of seismic events: 1) long period events, with a quasi-monochromatic spectral content (1-3 Hz peak frequency) and a duration of more than 50 s, often occurring in small swarms lasting from several minutes to some day; 2) volcanic tremor, with a spectral shape similar to the long period events but with a duration of several minutes (2-10); 3) hybrid events, with a waveform characterised by the presence of a high frequency initial phase, followed by a low frequency phase with characteristics similar to those of the long period events. The high frequency phase of the hybrid events was analysed using polarisation techniques, showing the presence of P waves. This phase is presumably located at short epicentral distances and shallow source depth. All the analysed seismic events show back-azimuths between 120 and 330 degrees from north (corresponding to zones of volcanic activity) showing no seismic activity in the middle of the caldera. Particle motion, Fourier spectral and spectrogram analysis show that the low frequency part of the three groups of the seismic signals have similar patterns. Moreover careful observations show that the high frequency phase which characterises the hybrid events is present in the long period and in the tremor events, even with lower signal to noise ratios. This evidence suggests that long period events are events in which the high frequency part is simply difficult to observe, due to a very shallow source and/or hypocentral distance higher than that of hybrids, while the tremor is composed of rapidly occurring hybrid events. We propose a possible interpretation for the three groups of seismic events. These may be generated by multiple pressure-steps due to the rapid phase change from liquid to vapour in a shallow aquifer which comes in contact with hot materials. The pressure change can put a crack in resonance or excite the generation of multiple surface waves modes in the shallow layered structure.


2019 ◽  
Author(s):  
Jessica Nadalin ◽  
Louis-Emmanuel Martinet ◽  
Ethan Blackwood ◽  
Meng-Chen Lo ◽  
Alik S. Widge ◽  
...  

AbstractCross frequency coupling (CFC) is emerging as a fundamental feature of brain activity, correlated with brain function and dysfunction. Many different types of CFC have been identified through application of numerous data analysis methods, each developed to characterize a specific CFC type. Choosing an inappropriate method weakens statistical power and introduces opportunities for confounding effects. To address this, we propose a statistical modeling framework to estimate high frequency amplitude as a function of both the low frequency amplitude and low frequency phase; the result is a measure of phase-amplitude coupling that accounts for changes in the low frequency amplitude. We show in simulations that the proposed method successfully detects CFC between the low frequency phase or amplitude and the high frequency amplitude, and outperforms an existing method in biologically-motivated examples. Applying the method to in vivo data, we illustrate how CFC evolves during seizures and is affected by electrical stimuli.


2015 ◽  
Vol 86 (7) ◽  
pp. 074501 ◽  
Author(s):  
Oliver Gerberding ◽  
Christian Diekmann ◽  
Joachim Kullmann ◽  
Michael Tröbs ◽  
Ioury Bykov ◽  
...  

Author(s):  
G. Y. Fan ◽  
J. M. Cowley

It is well known that the structure information on the specimen is not always faithfully transferred through the electron microscope. Firstly, the spatial frequency spectrum is modulated by the transfer function (TF) at the focal plane. Secondly, the spectrum suffers high frequency cut-off by the aperture (or effectively damping terms such as chromatic aberration). While these do not have essential effect on imaging crystal periodicity as long as the low order Bragg spots are inside the aperture, although the contrast may be reversed, they may change the appearance of images of amorphous materials completely. Because the spectrum of amorphous materials is continuous, modulation of it emphasizes some components while weakening others. Especially the cut-off of high frequency components, which contribute to amorphous image just as strongly as low frequency components can have a fundamental effect. This can be illustrated through computer simulation. Imaging of a whitenoise object with an electron microscope without TF limitation gives Fig. 1a, which is obtained by Fourier transformation of a constant amplitude combined with random phases generated by computer.


Sign in / Sign up

Export Citation Format

Share Document