scholarly journals Super resolution imaging achieved by using on-axis interferometry based on a Spatial Light Modulator

2013 ◽  
Vol 21 (8) ◽  
pp. 9615 ◽  
Author(s):  
Anwar Hussain ◽  
J. L. Martínez ◽  
A. Lizana ◽  
J. Campos
Photonics ◽  
2021 ◽  
Vol 8 (3) ◽  
pp. 64
Author(s):  
Haitang Yang ◽  
George V. Eleftheriades

Recently, the super-oscillation phenomenon has attracted attention because of its ability to super-resolve unlabelled objects in the far-field. Previous synthesis of super-oscillatory point-spread functions used the Chebyshev patterns where all sidelobes are equal. In this work, an approach is introduced to generate super-oscillatory Taylor-like point-spread functions that have tapered sidelobes. The proposed method is based on the Schelkunoff’s super-directive antenna theory. This approach enables the super-resolution, the first sidelobe level and the tapering rate of the sidelobes to be controlled. Finally, we present the design of several imaging experiments using a spatial light modulator as an advanced programmable grating to form the Taylor-like super-oscillatory point-spread functions and demonstrate their superiority over the Chebyshev ones in resolving the objects of two apertures and of a mask with the letter E.


2021 ◽  
Vol 8 (1) ◽  
pp. 28
Author(s):  
Cinzia Lastri ◽  
Gabriele Amato ◽  
Massimo Baldi ◽  
Tiziano Bianchi ◽  
Maria Fabrizia Buongiorno ◽  
...  

This paper describes the activities related to a feasibility study for an Earth observation optical payload, operating in the medium infrared, based on super-resolution and compressive sensing techniques. The presented activities are running in the framework of the ASI project SISSI, aiming to improve ground spatial resolution and mitigate saturation/blooming effects. The core of the payload is a spatial light modulator (SLM): a bidimensional array of micromirrors electronically actuated. Thanks to compressive sensing approach, the proposed payload eliminates the compression board, saving mass, memory and energy consumption.


2021 ◽  
Author(s):  
Sanghyeon Park ◽  
Yonghyeon Jo ◽  
Minsu Kang ◽  
Jin Hee Hong ◽  
Sangyoon Ko ◽  
...  

Specimen-induced aberration has been one of the major factors limiting the imaging depth in single-molecule localization microscopy (SMLM). In this study, we measured the wavefront of intrinsic reflectance signal at the fluorescence emission wavelength to construct a time-gated reflection matrix and find complex tissue aberration without resorting to fluorescence detection. Physically correcting the identified aberration via wavefront shaping with a liquid-crystal spatial light modulator (SLM) enables super-resolution imaging even when the aberration is too severe for initiating localization processes. We demonstrate the correction of complex tissue aberration, the root-mean-square (RMS) wavefront distortion of which is more than twice the 1 rad limit presented in previous studies; this leads to the recovery of single molecules by 77 times increased localization number. We visualised dendritic spines in mouse brain tissues and early myelination processes in a whole zebrafish at up to 102 μm depth with 28-39 nm localization precision. The proposed approach can expand the application range of SMLM to thick samples that cause the loss of localization points owing to severe aberration.


2007 ◽  
Author(s):  
Anders Ballestad ◽  
Brian McFadden ◽  
Pierre Lane ◽  
Nick McKinnon ◽  
Calum MacAulay ◽  
...  

2015 ◽  
Vol 40 (8) ◽  
pp. 1802 ◽  
Author(s):  
Asaf Ilovitsh ◽  
Tali Ilovitsh ◽  
Eyal Preter ◽  
Nadav Levanon ◽  
Zeev Zalevsky

Sign in / Sign up

Export Citation Format

Share Document