scholarly journals Compensating the electron beam energy spread by the natural transverse gradient of laser undulator in all-optical x-ray light sources

2014 ◽  
Vol 22 (11) ◽  
pp. 13880 ◽  
Author(s):  
Tong Zhang ◽  
Chao Feng ◽  
Haixiao Deng ◽  
Dong Wang ◽  
Zhimin Dai ◽  
...  
2020 ◽  
Vol 62 (5) ◽  
pp. 055004 ◽  
Author(s):  
Guangyu Li ◽  
Quratul Ain ◽  
Song Li ◽  
Muhammad Saeed ◽  
Daniel Papp ◽  
...  

2001 ◽  
Vol 79 (2-3) ◽  
pp. 153-162 ◽  
Author(s):  
E Träbert ◽  
P Beiersdorfer ◽  
K B Fournier ◽  
S B Utter ◽  
K L Wong

Systematic variation of the electron-beam energy in an electron-beam ion trap has been employed to produce soft-X-ray spectra (20 to 60 Å) of Au with well-defined maximum charge states ranging from Br- to Co-like ions. Guided by large-scale relativistic atomic structure calculations, the strongest Δn = 0 (n = 4 to n' = 4) transitions in Rb- to Cu-like ions (Au42+ – Au50+) have been identified. PACS Nos.: 32.30Rj, 39.30+w, 31.50+w, 32.20R


2002 ◽  
Vol 8 (S02) ◽  
pp. 480-481 ◽  
Author(s):  
Michael A. O'Keefe ◽  
Peter C. Tiemeijer ◽  
Maxim V. Sidorov

2007 ◽  
Vol 13 (5) ◽  
pp. 354-357 ◽  
Author(s):  
Raynald Gauvin

The derivation of a universal equation to compute the range of emitted X rays is presented for homogeneous bulk materials. This equation is based on two fundamental assumptions: the φ(ρz) curve of X-ray generation is constant and the ratio of the emitted to the generated X-ray range is equal to the ratio of the emitted to the generated X-ray intensity. An excellent agreement is observed with data obtained from Monte Carlo simulations of 200,000 electron trajectories in C, Al, Cu, Ag, Au, and an Fe–B alloy with boron weight fractions equal to 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 0.99, performed with the electron beam energy varied from 1 to 30 keV in 1-keV steps. When the ratio of the generated X-ray range to the photon mean free path is much smaller than one, the emission X-ray range is equal to the generated X-ray range, but when this ratio is much greater than one, the emission X-ray range is constant and is given by the product of the effective photon mean free path multiplied by the sine of the take-off angle.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Xi Yang ◽  
Junjie Li ◽  
Mikhail Fedurin ◽  
Victor Smaluk ◽  
Lihua Yu ◽  
...  

AbstractA real-time, nondestructive, Bragg-diffracted electron beam energy, energy-spread and spatial-pointing jitter monitor is experimentally verified by encoding the electron beam energy and spatial-pointing jitter information into the mega-electron-volt ultrafast electron diffraction pattern. The shot-to-shot fluctuation of the diffraction pattern is then decomposed to two basic modes, i.e., the distance between the Bragg peaks as well as its variation (radial mode) and the overall lateral shift of the whole pattern (drift mode). Since these two modes are completely decoupled, the Bragg-diffraction method can simultaneously measure the shot-to-shot energy fluctuation from the radial mode with 2·10−4 precision and spatial-pointing jitter from the drift mode having wide measurement span covering energy jitter range from 10−4 to 10−1. The key advantage of this method is that it allows us to extract the electron beam energy spread concurrently with the ongoing experiment and enables online optimization of the electron beam especially for future high charge single-shot ultrafast electron diffraction (UED) and ultrafast electron microscopy (UEM) experiments. Furthermore, real-time energy measurement enables the filtering process to remove off-energy shots, improving the resolution of time-resolved UED. As a result, this method can be applied to the entire UED user community, beyond the traditional electron beam diagnostics of accelerators used by accelerator physicists.


2014 ◽  
Vol 78 (9) ◽  
pp. 851-853 ◽  
Author(s):  
V. G. Dyukov ◽  
E. N. Evstaf’eva ◽  
V. A. Stebelkov ◽  
A. A. Tatarintsev ◽  
V. V. Khoroshilov

2018 ◽  
Vol 25 (1) ◽  
pp. 282-288 ◽  
Author(s):  
Shigeki Owada ◽  
Kazuaki Togawa ◽  
Takahiro Inagaki ◽  
Toru Hara ◽  
Takashi Tanaka ◽  
...  

The design and performance of a soft X-ray free-electron laser (FEL) beamline of the SPring-8 Compact free-electron LAser (SACLA) are described. The SPring-8 Compact SASE Source test accelerator, a prototype machine of SACLA, was relocated to the SACLA undulator hall for dedicated use for the soft X-ray FEL beamline. Since the accelerator is operated independently of the SACLA main linac that drives the two hard X-ray beamlines, it is possible to produce both soft and hard X-ray FEL simultaneously. The FEL pulse energy reached 110 µJ at a wavelength of 12.4 nm (i.e.photon energy of 100 eV) with an electron beam energy of 780 MeV.


Sign in / Sign up

Export Citation Format

Share Document