scholarly journals Compact Tb doped fiber optic current sensor with high sensitivity

2015 ◽  
Vol 23 (23) ◽  
pp. 29993 ◽  
Author(s):  
Duanni Huang ◽  
Sudharsanan Srinivasan ◽  
John E. Bowers
Author(s):  
Xue-Peng Jin ◽  
Hong-Zhi Sun ◽  
Shuo-Wei Jin ◽  
Wan-Ming Zhao ◽  
Jing-Ren Tang ◽  
...  

2019 ◽  
Vol 138 ◽  
pp. 48-52 ◽  
Author(s):  
Doğuş Karabulut ◽  
Anton Miazin ◽  
Andrei Gusarov ◽  
Philippe Moreau ◽  
Willem Leysen ◽  
...  
Keyword(s):  

2010 ◽  
Vol 437 ◽  
pp. 314-318 ◽  
Author(s):  
Nikolay I. Starostin ◽  
Maksim V. Ryabko ◽  
Yurii K. Chamorovskii ◽  
Vladimir P. Gubin ◽  
Aleksandr I. Sazonov ◽  
...  

The interferometric electric current fiber-optic sensor for application in industry is presented. The modified spun fiber is used for sensitive fiber coil of sensor. The sensor has accuracy of 0.5% at temperature range from -40°C to 60°C without necessity of additional temperature compensation. The range of measured current is 15 – 250 kA. A frequency band is 0 – 5000 Hz and a nonlinearity of a sensor output is ±0.15%.


2021 ◽  
Author(s):  
M Nagoor Meeran ◽  
S.P. Saravanan ◽  
H.H Hegazy

Abstract Recent research demonstrate that promising gas sensing materials are called metal-organic structures (MOFs) and their products due to their tunable form, elevated surface area, and extremely porous structure and physisorption towards gases with relatively low temperature.In this report, recent developments in transition-metal (Zn, Mn, Cu)-based MOFs and their derivatives are synthesized as sensing materials. The sensors samples were analyzed by XRD, SEM, TEM, BET and XPS in order to know the textural, structural and electronic state of the samples. Fiber optic clad modified sensors were fabricated and tested gas sensing properties towards H2 gas with various concentrations (0-1000 ppm). Among the three sensing material, Zn doped MOFs sensor showed outstanding selectivity with high sensitivity (115 counts/kpa) towards H2 gas. Moreover, it has shown high response (20 s) and recovery time (27 s) as well as long term stability. The designed sensors may be required to apply to the production of an outstanding sensor for H2 for commercial uses.


Fiber optic has extraordinary properties and is suitable in sensor applications due to its special potential. Currently, macro bending characteristics of newly developed hetero core fiber optic element are designed and evaluated. This paper presents the preliminary results obtained from the numerical simulation analysis of the bending sensitivity of U-shape fiber optics toward the 2D electromagnetic wave in terms of mesh, curvature radius, core fiber size, and turn number. Fiber optics with core sizes of 4, 9, 50, and 62.5 μm were designed. In addition, the combination of core diameters 50-4-50, 50-9-50, 62.5-4-62.5, and 62.5-9-62.5 μm is evaluated to compare the outcome of transmission power in terms of hetero core structure of fiber optic. Simulation is performed using COMSOL Multiphysics simulation tool. The developed U-shape fiber optic is designed to sense the distortion of reducing power transmission by comparing input and output power. Results show that the selected mesh depends on the size of geometry bending fiber optics, and fine and finer mesh is the best for U-shape fiber optic. Furthermore, the power flow on the fiber decreases with the decreasing curvature radius and increasing turn number. The fiber with a core size combination of 62.5–4–62.5 um has high sensitivity in terms of loss. The attained results possess higher potential in the field of sensor applications, such as displacement, strain, pressure, and monitoring respiration, on human body. This study serves as a basis for further investigation of nanomaterial coating on fiber optics, thereby enhancing its credibility for sensing.


2020 ◽  
Vol 28 (5) ◽  
pp. 6618 ◽  
Author(s):  
Bo Zhang ◽  
Ke Chen ◽  
Yewei Chen ◽  
Beilei Yang ◽  
Min Guo ◽  
...  

Sensors ◽  
2015 ◽  
Vol 15 (7) ◽  
pp. 16632-16641 ◽  
Author(s):  
Ji Xia ◽  
Qi Wang ◽  
Xu Liu ◽  
Hong Luo

Sign in / Sign up

Export Citation Format

Share Document