sensor technique
Recently Published Documents


TOTAL DOCUMENTS

139
(FIVE YEARS 16)

H-INDEX

20
(FIVE YEARS 1)

2021 ◽  
Author(s):  
M Nagoor Meeran ◽  
S.P. Saravanan ◽  
H.H Hegazy

Abstract Recent research demonstrate that promising gas sensing materials are called metal-organic structures (MOFs) and their products due to their tunable form, elevated surface area, and extremely porous structure and physisorption towards gases with relatively low temperature.In this report, recent developments in transition-metal (Zn, Mn, Cu)-based MOFs and their derivatives are synthesized as sensing materials. The sensors samples were analyzed by XRD, SEM, TEM, BET and XPS in order to know the textural, structural and electronic state of the samples. Fiber optic clad modified sensors were fabricated and tested gas sensing properties towards H2 gas with various concentrations (0-1000 ppm). Among the three sensing material, Zn doped MOFs sensor showed outstanding selectivity with high sensitivity (115 counts/kpa) towards H2 gas. Moreover, it has shown high response (20 s) and recovery time (27 s) as well as long term stability. The designed sensors may be required to apply to the production of an outstanding sensor for H2 for commercial uses.


Sensors ◽  
2020 ◽  
Vol 20 (16) ◽  
pp. 4522 ◽  
Author(s):  
Szymon Sieciński ◽  
Paweł S. Kostka ◽  
Ewaryst J. Tkacz

Physiological variation of the interval between consecutive heartbeats is known as the heart rate variability (HRV). HRV analysis is traditionally performed on electrocardiograms (ECG signals) and has become a useful tool in the diagnosis of different clinical and functional conditions. The progress in the sensor technique encouraged the development of alternative methods of analyzing cardiac activity: Seismocardiography and gyrocardiography. In our study we performed HRV analysis on ECG, seismocardiograms (SCG signals) and gyrocardiograms (GCG signals) using the PhysioNet Cardiovascular Toolbox. The heartbeats in ECG were detected using the Pan–Tompkins algorithm and the heartbeats in SCG and GCG signals were detected as peaks within 100 ms from the occurrence of the ECG R waves. The results of time domain, frequency domain and nonlinear HRV analysis on ECG, SCG and GCG signals are similar and this phenomenon is confirmed by very strong linear correlation of HRV indices. The differences between HRV indices obtained on ECG and SCG and on ECG and GCG were statistically insignificant and encourage using SCG or GCG for HRV estimation. Our results of HRV analysis confirm stronger correlation of HRV indices computed on ECG and GCG signals than on ECG and SCG signals because of greater tolerance to inter-subject variability and disturbances.


Author(s):  
I. Aicardi ◽  
A. Lingua ◽  
L. Mazzara ◽  
M. A. Musci ◽  
G. Rizzo

Abstract. This study describes some tests carried out, within the European project (reference call: MANUNET III 2018, project code: MNET18/ICT-3438) called SEI (Spectral Evidence of ice), for the geometrical ice detection on airplane wings. The purpose of these analysis is to estimate thickness and shape of the ice that an RGB sensor is able to detect on large aircrafts as Boeing 737-800. However, field testing are not available yet, therefore, in order to simulate the final configuration, a steel panel has been used to reproduce the aircraft surface. The adopted methodology consists in defining a reference surface and modelling its 3D shape with and without ice through photogrammetric acquisitions collected by a DJI Mavic Air drone hosting a RGB camera and processed by Agisoft Metashape software. The comparison among models with and without the ice has been presented and results show that it is possible to identify the ice, even though some noise still remains due to the geometric reconstruction itself. Finally, using 3dReshaper and Matlab software, the authors develop various analysis defining the operative limits, the processing time, the correct setting up of Metashape for a more accurate ice detection, the optimization of the methodology in terms of processing time, precision and completeness. The procedure can certainly be more reliable considering the usage of the hyperspectral sensor technique as future implementation.


Sensors ◽  
2020 ◽  
Vol 20 (11) ◽  
pp. 3057 ◽  
Author(s):  
Yongyue Wang ◽  
Beitong Yao ◽  
Tianbo Wang ◽  
Chunhe Xia ◽  
Xianghui Zhao

Modern retrieval systems tend to deteriorate because of their large output of useless and even misleading information, especially for complex search requests on a large scale. Complex information retrieval (IR) tasks requiring multi-hop reasoning need to fuse multiple scattered text across two or more documents. However, there are two challenges for multi-hop retrieval. To be specific, the first challenge is that since some important supporting facts have little lexical or semantic relationship with the retrieval query, the retriever often omits them; the second challenge is that once a retriever chooses misinformation related to the query as the entities of cognitive graphs, the retriever will fail. In this study, in order to improve the performance of retrievers in complex tasks, an intelligent sensor technique was proposed based on a sub-scope with cognitive reasoning (2SCR-IR), a novel method of retrieving reasoning paths over the cognitive graph to provide users with verified multi-hop reasoning chains. Inspired by the users’ process of step-by-step searching online, 2SCR-IR includes a dynamic fusion layer that starts from the entities mentioned in the given query, explores the cognitive graph dynamically built from the query and contexts, gradually finds relevant supporting entities mentioned in the given documents, and verifies the rationality of the retrieval facts. Our experimental results show that 2SCR-IR achieves competitive results on the HotpotQA full wiki and distractor settings, and outperforms the previous state-of-the-art methods by a more than two points absolute gain on the full wiki setting.


Sign in / Sign up

Export Citation Format

Share Document