scholarly journals Strong chiral response in non-collinear highharmonic generation driven by purelyelectric-dipole interactions

2021 ◽  
Author(s):  
David Ayuso ◽  
Andres F. Ordonez ◽  
Piero Decleva ◽  
Misha Ivanov ◽  
Olga Smirnova
Keyword(s):  
2019 ◽  
Author(s):  
Danijela Gregurec ◽  
Alexander W. Senko ◽  
Andrey Chuvilin ◽  
Pooja Reddy ◽  
Ashwin Sankararaman ◽  
...  

In this work, we demonstrate the application of anisotropic magnetite nanodiscs (MNDs) as transducers of torque to mechanosensory cells under weak, slowly varying magnetic fields (MFs). These MNDs possess a ground state vortex configuration of magnetic spins which affords greater colloidal stability due to eliminated dipole-dipole interactions characteristic of isotropic magnetic particles of similar size. We first predict vortex magnetization using micromagnetic stimulations in sub-micron anisotropic magnetite particles and then use electron holography to experimentally investigate the magnetization of MNDs 98–226 nm in diameter. When MNDs are coupled to MFs, they transition between vortex and in-plane magnetization allowing for the exertion of the torque on the pN scale, which is sufficient to activate mechanosensitive ion channels in cell membranes.<br>


Author(s):  
Hannah Russell ◽  
Rachel Stewart ◽  
Christopher Prior ◽  
Vasily S. Oganesyan ◽  
Thembaninkosi G. Gaule ◽  
...  

AbstractIn the study of biological structures, pulse dipolar spectroscopy (PDS) is used to elucidate spin–spin distances at nanometre-scale by measuring dipole–dipole interactions between paramagnetic centres. The PDS methods of Double Electron Electron Resonance (DEER) and Relaxation Induced Dipolar Modulation Enhancement (RIDME) are employed, and their results compared, for the measurement of the dipolar coupling between nitroxide spin labels and copper-II (Cu(II)) paramagnetic centres within the copper amine oxidase from Arthrobacter globiformis (AGAO). The distance distribution results obtained indicate that two distinct distances can be measured, with the longer of these at c.a. 5 nm. Conditions for optimising the RIDME experiment such that it may outperform DEER for these long distances are discussed. Modelling methods are used to show that the distances obtained after data analysis are consistent with the structure of AGAO.


1972 ◽  
Vol 40 (2) ◽  
pp. 143-144 ◽  
Author(s):  
I.I. Gurevich ◽  
E.A. Mel'eshko ◽  
I.A. Muratova ◽  
B.A. Nikol'sky ◽  
V.S. Roganov ◽  
...  

2003 ◽  
Vol 17 (24) ◽  
pp. 1271-1275 ◽  
Author(s):  
I. ARDELEAN ◽  
C. ANDRONACHE ◽  
P. PǍŞCUŢǍ

The temperature dependence of the magnetic susceptibility of x Fe 2 O 3·(100-x)-[ P 2 O 5· CaO ] glasses with 0<x≤50 mol % have been investigated. These data revealed that the valence states and the distribution of iron ions in the glass matrix depend on the Fe 2 O 3 content. For the glasses with x≤1 mol % only Fe 3+ ions are evidenced. In the case of the glasses with 3≤x≤35 mol % both Fe 3+ and Fe 2 ions co-exist in the P 2 O 5· CaO glass matrix, the Fe 2+ ion content is higher than that of the Fe 3+ ions for glasses with x≥10 mol %. For the glasses with x>35 mol %, the evaluated values of the μ eff indicate either the presence of Fe + ions or the coordination influence on the magnetic moment of iron ions, but the presence of small quantities of the antiferromagnetic or ferrimagnetic interactions between iron ions in studied temperature range cannot be excluded. The high temperature susceptibility results indicate that the iron ions are isolated or participate in dipole-dipole interactions for glasses with x≤35 mol % and are antiferromagnetically coupled for higher contents of Fe 2 O 3.


1998 ◽  
Vol 12 (20) ◽  
pp. 849-857 ◽  
Author(s):  
Chang Q. Sun

A novel rhombi-chain network is derived from low energy electron diffraction experimental observations and the recent model theory, revealing that the O-Rh(100) clock-rotation is driven by an electrostatic force arisen from bond formation. Thus the O-Rh bond suffers from tension other than compression, or strain relief. As O -1 evolves into the hybridized- O -2,a Rh 5 O cluster in the c(2 × 2) phase develops into a Rh 4 O tetrahedron and yields the overall (2 × 2)p4g reconstruction. In the (2 × 2)p4g phase, the hollow-sited O -2 defines one Rh + ion and two lone-pair-induced Rh dipoles of its four surface neighbors. The surface atomic ratio (O : Rh = 1 : 2) allocates, therefore, half of the surface Rh atoms to be the Rh dipoles and another half to play dual roles of Rh + ion and Rh dipole. Interactions along the "dipole–dipole – Rh +/dipole – Rh +/dipole" strings create the rhombi-chain at the <11> directions, and a responding bond tension confines the (2 × 2)p4g clock rotation.


2007 ◽  
Vol 14 (03) ◽  
pp. 471-480 ◽  
Author(s):  
T. K. DAS ◽  
M. G. COTTAM

A theory is presented for the magnetostatic modes in ferromagnetic and antiferromagnetic nanotubes, which have a large length-to-radius aspect ratio and an external magnetic field parallel to the cylindrical axis. The surface and bulk magnetic excitations (or magnetostatic spin waves) are studied for cases where the dipole–dipole interactions are dominant in the spin dynamics. This situation can be realized at sufficiently small wavevectors by inelastic light scattering or magnetic resonance techniques. A macroscopic continuum theory is developed, using the magnetostatic form of Maxwell's equations and the electromagnetic boundary conditions, and the characteristic equations (or dispersion relations) are deduced for the magnetostatic modes. Numerical calculations are presented for ferromagnetic and antiferromagnetic nanostructures, taking Ni 80 Fe 20 and MnF 2, respectively. The spatial variations of the mode amplitudes are also investigated.


Author(s):  
Nadine Aubry ◽  
Pushpendra Singh

The objective of this paper is to study the dependence of the electrostatic force that act on a particle within the interface between two immiscible fluids on the parameters such as the dielectric properties of the fluids and particles, the particle’s position within the interface, and the electric field strength. It is shown that the component of electrostatic force normal to the interface varies as a2, where a is the particle radius, and since in equilibrium it is balanced by the vertical capillary force, the interfacial deformation caused by the particle changes when an external electric field is applied. In addition, there are lateral electrostatic forces among the particles due to the dipole-dipole interactions which, when the distance between two particles is O(a), vary as a2, and remain significant for submicron sized particles.


1984 ◽  
Vol 24 (17) ◽  
pp. 1306-1311 ◽  
Author(s):  
A. Eisenberg ◽  
M. Hara
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document