Very-high-resolution tandem Fabry-Perot etalon cylindrical beam volume hologram spectrometer for diffuse source spectroscopy

2007 ◽  
Vol 33 (1) ◽  
pp. 31 ◽  
Author(s):  
Majid Badieirostami ◽  
Omid Momtahan ◽  
Chaoray Hsieh ◽  
Ali Adibi ◽  
David J. Brady

The spherical Fabry -Perot interferometer was designed by P. Connes as an instrument capable of realizing higher resolving power than the normal Fabry -Perot interferometer, by virtue of its greater light power at high resolution, and the much lower requirement with regard to accuracy of adjustment. The instrument has now been used successfully in the resolution of structure in the resonance line of the arc spectrum of barium; components with a separation of 2.0x 10 -3 cm -1 have been resolved; they were observed in the absorption produced by a Jackson -Kuhn atomic beam, of high collimation. The instrument has also been used for observing line structure with an absorbing atomic beam traversing the interior of the interferometer; by this means the amount of material required for observing hyperfine structure using an atomic beam , even with very high collimation, can be reduced to a few milligrams, or approximately 100 times less than that required with an atomic beam external to the interferometer, so that enriched isotopes, available in small quantities, can be used; alternatively, adequate absorption can be obtained with much higher collimations of the beam, and correspondingly improved limits of resolution.


1994 ◽  
Vol 144 ◽  
pp. 593-596
Author(s):  
O. Bouchard ◽  
S. Koutchmy ◽  
L. November ◽  
J.-C. Vial ◽  
J. B. Zirker

AbstractWe present the results of the analysis of a movie taken over a small field of view in the intermediate corona at a spatial resolution of 0.5“, a temporal resolution of 1 s and a spectral passband of 7 nm. These CCD observations were made at the prime focus of the 3.6 m aperture CFHT telescope during the 1991 total solar eclipse.


2019 ◽  
Vol 232 ◽  
pp. 111300
Author(s):  
Xiaogang Song ◽  
Nana Han ◽  
Xinjian Shan ◽  
Chisheng Wang ◽  
Yingfeng Zhang ◽  
...  

2021 ◽  
Vol 13 (13) ◽  
pp. 2508
Author(s):  
Loredana Oreti ◽  
Diego Giuliarelli ◽  
Antonio Tomao ◽  
Anna Barbati

The importance of mixed forests is increasingly recognized on a scientific level, due to their greater productivity and efficiency in resource use, compared to pure stands. However, a reliable quantification of the actual spatial extent of mixed stands on a fine spatial scale is still lacking. Indeed, classification and mapping of mixed populations, especially with semi-automatic procedures, has been a challenging issue up to date. The main objective of this study is to evaluate the potential of Object-Based Image Analysis (OBIA) and Very-High-Resolution imagery (VHR) to detect and map mixed forests of broadleaves and coniferous trees with a Minimum Mapping Unit (MMU) of 500 m2. This study evaluates segmentation-based classification paired with non-parametric method K- nearest-neighbors (K-NN), trained with a dataset independent from the validation one. The forest area mapped as mixed forest canopies in the study area amounts to 11%, with an overall accuracy being equal to 85% and K of 0.78. Better levels of user and producer accuracies (85–93%) are reached in conifer and broadleaved dominated stands. The study findings demonstrate that the very high resolution images (0.20 m of spatial resolutions) can be reliably used to detect the fine-grained pattern of rare mixed forests, thus supporting the monitoring and management of forest resources also on fine spatial scales.


Sign in / Sign up

Export Citation Format

Share Document