small field of view
Recently Published Documents


TOTAL DOCUMENTS

160
(FIVE YEARS 36)

H-INDEX

16
(FIVE YEARS 1)

Author(s):  
Sebastian Meyer ◽  
Andreas Wolf ◽  
Daniela Sanders ◽  
Kamila Iskhakova ◽  
Hanna Ćwieka ◽  
...  

Magnesium-silver alloys are of high interest for the use as temporary bone implants due to their antibacterial properties in addition to biocompatibility and biodegradability. Thin wires in particular can be used for scaffolding, but the determination of their degradation rate and homogeneity using traditional methods is difficult. Therefore, we have employed 3D imaging using X-ray near-field holotomography with sub-micrometer resolution to study the degradation of thin (250 μm diameter) Mg-2Ag and Mg-6Ag wires. The wires were studied in two states, recrystallized and solution annealed to assess the influence of Ag content and precipitates on the degradation. Imaging was employed after degradation in Dulbecco’s modified Eagle’s medium and 10% fetal bovine serum after 1 to 7 days. At 3 days of immersion the degradation rates of both alloys in both states were similar, but at 7 days higher silver content and solution annealing lead to decreased degradation rates. The opposite was observed for the pitting factor. Overall, the standard deviation of the determined parameters was high, owing to the relatively small field of view during imaging and high degradation inhomogeneity of the samples. Nevertheless, Mg-6Ag in the solution annealed state emerges as a potential material for thin wire manufacturing for implants.


Author(s):  
Gan Guangming ◽  
Chen Mei ◽  
Zhang Chenchen ◽  
Xie Wei ◽  
Geng Junhua

AbstractThe Drosophila neuromuscular junction is an excellent model for neuroscience research. However, the distribution of neuromuscular junctions is very diffuse, and it is not easy to accurately locate during ultrathin sectioning, which seriously interferes with the ultrastructural analysis under electron microscopy that only has a small field of view. Here, we reported an efficient method for acquiring the ultrastructural picture of neuromuscular junctions in Drosophila larva under electron microscopy. The procedure was as follows: first, the larval sample of body wall muscle was placed between the metal mesh and was dehydrated with alcohol and infiltrated with epoxy resin to prevent the sample from curling or bending, after it was dissected and fixed into thin slices. Second, the sample was embedded in resin into a flat sheet to facilitate the positioning of the muscles. Third, carefully and gradually remove the excess resin and the cuticle of the larvae, cut off both ends of the special body segment, and trim the excess specific muscles according to the recommended ratio of trimming muscles, which would reduce the workload exponentially. At last, the trimmed sample were prepared into serial about 1000 ultrathin sections that was about total 80 microns thickness, and 30–40 sections were gathered into a grid to stain with lead citrate and uranyl acetate. This method could also be applied to the other small and thin samples such as the Drosophila embryo, ventral nerve cord and brain.


2021 ◽  
Vol 14 (10) ◽  
pp. 6561-6599
Author(s):  
Liviu Ivănescu ◽  
Konstantin Baibakov ◽  
Norman T. O'Neill ◽  
Jean-Pierre Blanchet ◽  
Karl-Heinz Schulz

Abstract. Starphotometry, the night-time counterpart of sunphotometry, has not yet achieved the commonly sought observational error level of 1 %: a spectral optical depth (OD) error level of 0.01. In order to address this issue, we investigate a large variety of systematic (absolute) uncertainty sources. The bright-star catalogue of extraterrestrial references is noted as a major source of errors with an attendant recommendation that its accuracy, particularly its spectral photometric variability, be significantly improved. The small field of view (FOV) employed in starphotometry ensures that it, unlike sun- or moonphotometry, is only weakly dependent on the intrinsic and artificial OD reduction induced by scattering into the FOV by optically thin clouds. A FOV of 45 arcsec (arcseconds) was found to be the best trade-off for minimizing such forward-scattering errors concurrently with flux loss through vignetting. The importance of monitoring the sky background and using interpolation techniques to avoid spikes and to compensate for measurement delay was underscored. A set of 20 channels was identified to mitigate contamination errors associated with stellar and terrestrial atmospheric gas absorptions, as well as aurora and airglow emissions. We also note that observations made with starphotometers similar to our High Arctic instrument should be made at high angular elevations (i.e. at air masses less than 5). We noted the significant effects of snow crystal deposition on the starphotometer optics, how pseudo OD increases associated with this type of contamination could be detected, and how proactive techniques could be employed to avoid their occurrence in the first place. If all of these recommendations are followed, one may aspire to achieve component errors that are well below 0.01: in the process, one may attain a total 0.01 OD target error.


Metals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1422
Author(s):  
Sebastian Meyer ◽  
Andreas Wolf ◽  
Daniela Sanders ◽  
Kamila Iskhakova ◽  
Hanna Ćwieka ◽  
...  

Magnesium–silver alloys are of high interest for the use as temporary bone implants due to their antibacterial properties in addition to biocompatibility and biodegradability. Thin wires in particular can be used for scaffolding, but the determination of their degradation rate and homogeneity using traditional methods is difficult. Therefore, we have employed 3D imaging using X-ray near-field holotomography with sub-micrometer resolution to study the degradation of thin (250 μm diameter) Mg-2Ag and Mg-6Ag wires. The wires were studied in two states, recrystallized and solution annealed to assess the influence of Ag content and precipitates on the degradation. Imaging was employed after degradation in Dulbecco’s modified Eagle’s medium and 10% fetal bovine serum after 1 to 7 days. At 3 days of immersion the degradation rates of both alloys in both states were similar, but at 7 days higher silver content and solution annealing lead to decreased degradation rates. The opposite was observed for the pitting factor. Overall, the standard deviation of the determined parameters was high, owing to the relatively small field of view during imaging and high degradation inhomogeneity of the samples. Nevertheless, Mg-6Ag in the solution annealed state emerges as a potential material for thin wire manufacturing for implants.


Photonics ◽  
2021 ◽  
Vol 8 (8) ◽  
pp. 330
Author(s):  
Changjiang Zhou ◽  
Hao Yu ◽  
Bo Yuan ◽  
Liqiang Wang ◽  
Qing Yang

There are shortcomings of binocular endoscope three-dimensional (3D) reconstruction in the conventional algorithm, such as low accuracy, small field of view, and loss of scale information. To address these problems, aiming at the specific scenes of stomach organs, a method of 3D endoscopic image stitching based on feature points is proposed. The left and right images are acquired by moving the endoscope and converting them into point clouds by binocular matching. They are then preprocessed to compensate for the errors caused by the scene characteristics such as uneven illumination and weak texture. The camera pose changes are estimated by detecting and matching the feature points of adjacent left images. Finally, based on the calculated transformation matrix, point cloud registration is carried out by the iterative closest point (ICP) algorithm, and the 3D dense reconstruction of the whole gastric organ is realized. The results show that the root mean square error is 2.07 mm, and the endoscopic field of view is expanded by 2.20 times, increasing the observation range. Compared with the conventional methods, it does not only preserve the organ scale information but also makes the scene much denser, which is convenient for doctors to measure the target areas, such as lesions, in 3D. These improvements will help improve the accuracy and efficiency of diagnosis.


2021 ◽  
Vol 21 (Supplement_1) ◽  
pp. S59-S66
Author(s):  
Gregory W Basil ◽  
Vignessh Kumar ◽  
Michael Y Wang

Abstract Given the inherent limitations of spinal endoscopic surgery, proper lighting and visualization are of tremendous importance. These limitations include a small field of view, significant potential for disorientation, and small working cannulas. While modern endoscopic surgery has evolved in spite of these shortcomings, further progress in improving and enhancing visualization must be made to improve the safety and efficacy of endoscopic surgery. However, in order to understand potential avenues for improvement, a strong basis in the physical principles behind modern endoscopic surgery is first required. Having established these principles, novel techniques for enhanced visualization can be considered. Most compelling are technologies that leverage the concepts of light transformation, tissue manipulation, and image processing. These broad categories of enhanced visualization are well established in other surgical subspecialties and include techniques such as optical chromoendoscopy, fluorescence imaging, and 3-dimensional endoscopy. These techniques have clear applications to spinal endoscopy and represent important avenues for future research.


2021 ◽  
Author(s):  
Liviu Ivănescu ◽  
Konstantin Baibakov ◽  
Norman T. O'Neill ◽  
Jean-Pierre Blanchet ◽  
Karl-Heinz Schulz

Abstract. Starphotometry, the nightime counterpart of sunphotometry, has not yet achieved the commonly sought observational error level of 1%: a spectral optical depth (OD) error level of 0.01. In order to address this issue, we investigate a large variety of systematic (absolute) uncertainty sources. The bright star catalog of extraterrestrial references is noted as a major source of errors with an attendant recommendation that its accuracy, as well as its spectral photometric variability, be significantly improved. The small Field of View (FOV) employed in starphotometry ensures that starphotometry, unlike sun- or moonphotometry, is only weakly dependent on the intrinsic and artificial OD reduction induced by scattering into the FOV by optically thin clouds. A FOV of 45 arc-seconds was found to be the best tradeoff for minimizing such forward scattering errors concurrently with flux loss through vignetting. The importance of monitoring the sky background and using interpolation techniques to avoid spikes and to compensate for measurement delay was underscored. A set of 20 channels was identified to mitigate contamination errors associated with stellar and terrestrial-atmospheric gas absorptions, as well as aurora and airglow emissions. We also note that observations for starsphotometers similar to our high-Arctic starphotometer should be made at high angular elevations, i.e. at airmasses lower than 5. We noted the significant effects of snow crystal deposition on the starphotometer optics, how pseudo OD increases associated with this type of contamination could be detected and how proactive techniques could be employed to avoid their occurrence in the first place. If all these recommendations are followed, one may aspire to achieve component errors that are well below 0.01: in the process one may attain a total 0.01 OD target error.


2021 ◽  
Vol 118 (9) ◽  
pp. 091103
Author(s):  
Qixin Hu ◽  
Siyan Xu ◽  
Xue-wen Chen ◽  
Xinggang Wang ◽  
Ken Xingze Wang

Sign in / Sign up

Export Citation Format

Share Document