Wide dynamic range high-speed three-dimensional quantitative OCT angiography with a hybrid-beam scan

2018 ◽  
Vol 43 (10) ◽  
pp. 2237 ◽  
Author(s):  
Taejin Park ◽  
Sun-Joo Jang ◽  
Myounghee Han ◽  
Sukyoung Ryu ◽  
Wang-Yuhl Oh
Author(s):  
Laura Ekstrand ◽  
Song Zhang

Measuring three-dimensional (3D) surfaces with extremely high contrast (e.g., partially shiny surfaces) is extremely difficult with optical metrology methods. Conventional techniques, which involve measurement from multiple angles or camera aperture adjustments, pose issues for high accuracy measurement in the manufacturing industry because they are difficult to automate and often induce undesirable vibrations in the calibrated measurement system. This paper presents a framework for optically capturing high-contrast 3D surfaces via flexible exposure time variation. This technique leverages the binary defocusing technique that was recently developed at Iowa State University to allow digital fringe projection with a camera exposure time far shorter than the projector’s projection period. Since the camera exposure time can be rapidly adjusted in software, the proposed technique could be automated without mechanical adjustments to the measurement system. Moreover, the exposure times are sufficiently short as to be efficiently packed into a projection period, giving this technique the potential for high speed applications. Experimental results will be presented to demonstrate the success of the proposed method.


Author(s):  
Yuki Harada ◽  
Kazuto Saiga ◽  
Jun Sakakibara

PIV is one of the methods to measure velocity in a flow field, but its dynamic velocity range is narrower than other flow velocimeter. This disadvantage is particularly apparent in measurements of spectrum in turbulent boundary layers, where the higher wave number side of the spectrum cannot be measured with high accuracy. In this study, we captured images of the same particle in the flow field from many different direction simultaneously, and reduced the measurement error of the particle displacement by averaging the acquired particle positions, so called ‘Multiple Eye PIV’ [Maekawa, A., Sakakibara, J., 2018, Meas. Sci. Tech., 29, 064011]. We applied this method to obtain the energy spectrum in a turbulent pipe flow aiming for resolving higher wave number. Particle images were captured by a single high-speed CMOS camera (Fastcam Nova S6, 6000 fps, Photron) through a mirror array consists of 110 flat mirrors arranged in the shape of an axisymmetric ellipsoid (Fig.1), as shown in Fig.2. The images were evaluated by Tomographic PIV method to resolve three-dimensional velocity field. Fig.3 shows energy spectrum in a pipe measured by Tomographic-PIV with number of mirrors, N, up to 100 in addition to the 2D2C-PIV with a single mirror. Although the spectrum curve for the result of Tomographic-PIV begins to depart from the reference curve at wavenumber beyond 10-1 , such wavenumber grows as N increases, and consequently the plateau of the curve appeared at lower energy. Such a downward shift of the plateau is expected due to the improvement of the dynamic velocityrange, which is approximately one order in energy, i.e. three times in velocity, found between N=4 and 100. Note that the cases of N=4 and 40 loses the dynamic range against the 2C2D-PIV case. From the above, we can summarize that the advantage of Multiple Eye PIV over the 2C2D-PIV is effective when the number of mirrors is more than 40. In this experiment, the issue is that particles images flickered. In order to resolve this issue, we tried to use fluorescent particles, and obtained a clear particle images in the following experiment. We are now analyzing whether the energy spectrum can be measured with higher accuracy due to improved resolution of the particles.


Photonics ◽  
2021 ◽  
Vol 8 (4) ◽  
pp. 98
Author(s):  
Naseem ◽  
Zohauddin Ahmad ◽  
Yan-Min Liao ◽  
Rui-Lin Chao ◽  
Po-Shun Wang ◽  
...  

In this work, we demonstrate In0.52Al0.48As top/backside-illuminated avalanche photodiodes (APD) with dual multiplication layers for high-speed and wide dynamic range performances. Our fabricated top-illuminated APDs, with a partially depleted p-type In0.53Ga0.47As absorber layer and thin In0.52Al0.48As dual multiplication (M-) layer (60 and 88 nm), exhibit a wide optical-to-electrical bandwidth (16 GHz) with high responsivity (2.5 A/W) under strong light illumination (around 1 mW). The measured bias dependent 3-dB O-E bandwidth was pinned at 16 GHz without any serious degradation near the saturation current output. To further increase the speed, we downscaled the active diameter and adopted a back-side illuminated structure with flip-chip bonding for batter optical alignment tolerance. A significant improvement in maximum bandwidth was demonstrated (25 versus 18 GHz). On the other hand, we adopted a thick dual M-layer (200 and 300 nm) and 2 μm absorber layer in the APD design to circumvent the problem of serious bandwidth degradation under high gain (>100) and high-power operation which significantly enhanced the dynamic range. Due to dual M-layer, the carriers could be energized in the first M-layer then propagate to the second M-layer to trigger the avalanche process. In both cases, despite variation in thickness of the absorber and M-layer, the cascade avalanche process leads to values close to the ultra-high gain bandwidth product (GBP) of around 460 GHz with a responsivity of 0.4 and 1 A/W at unit gain for the thin and thick M-layer devices, respectively. We successfully achieved a good sensitivity of around −20.6 dBm optical modulation amplitude (OMA) at a data rate of 25.78 Gb/s, by packaging the fabricated APDs (thin dual M-layer (60 and 88 nm) version) with a 25 Gb/s trans-impedance amplifier in a 100 Gb/s ROSA package. The results show that, the incorporation of a dual multiplication (M) layer structure in the APD opens a new window to obtaining the higher GBP in order to meet the requirements for high-speed transmission without the need of further downscaling the multiplication layer.


2013 ◽  
Vol 142 ◽  
pp. 261-273
Author(s):  
Bo Zhang ◽  
Yong-Zhong Xiong ◽  
Lei Wang ◽  
Sanming Hu ◽  
Joshua Le-Wei Li

Sign in / Sign up

Export Citation Format

Share Document