optical metrology
Recently Published Documents


TOTAL DOCUMENTS

622
(FIVE YEARS 98)

H-INDEX

21
(FIVE YEARS 5)

Machines ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 25
Author(s):  
Cody Berry ◽  
Marcos S. G. Tsuzuki ◽  
Ahmad Barari

On-line data collection from the manufactured parts is an essential element in Industry 4.0 to monitor the production’s health, which required strong data analytics. The optical metrology-based inspection of highly reflective parts in a production line, such as parts with metallic surfaces, is a difficult challenge. As many on-line inspection paradigms require the use of optical sensors, this reflectivity can lead to large amounts of noise, rendering the scan inaccurate. This paper discusses a method for noise reduction and removal in datapoints resulting from scanning the reflective planar surfaces. Utilizing a global statistic-based iterative approach, noise is gradually removed from the dataset at increasing percentages. The change in the standard deviation of point-plane distances is examined, and an optimal amount of noisy data is removed to reduce uncertainty in representing the workpiece. The developed algorithm provides a fast and efficient method for noise reduction in optical coordinate metrology and scanning.


Author(s):  
Deming Meng ◽  
Yifei Wang ◽  
Hao Yang ◽  
Buyun Chen ◽  
Pan Hu ◽  
...  
Keyword(s):  

2021 ◽  
Vol 11 (22) ◽  
pp. 10533
Author(s):  
Ralf B. Bergmann ◽  
Michael Kalms ◽  
Claas Falldorf

Optical metrology is a key element for many areas of modern production. Preferably, measurements should take place within the production line (in-process) and keep pace with production speed, even if the parts have a complex geometry or are difficult to access. The challenge for modern optical in-process measurements is, therefore, how to simultaneously make optical metrology precise, fast, robust and capable of handling geometrical complexity. The potential of individual techniques to achieve these demands can be visualized by the tetrahedron of optical metrology. Depending on the application, techniques based on interferometry or geometrical optics may have to be preferred. The paper emphasizes complexity and robustness as prime areas of improvement. Concerning interferometric techniques, we report on fast acquisition as used in holography, tailoring of coherence properties and use of Multiple simultaneous Viewing direction holography (MultiView), self reference used in Computational Shear Interferometry (CoSI) and the simultaneous use of several light sources in Multiple Aperture Shear Interferometry (MArS) based on CoSI as these techniques have proven to be particularly effective. The use of advanced approaches based on CoSI requires a transition of the description of light from the use of the well-known wave field to the coherence function of light. Techniques based on geometric optics are generally comparatively robust against environmental disturbances, and Fringe Projection (FP) is shown to be especially useful in very demanding measurement conditions.


2021 ◽  
Vol 11 (20) ◽  
pp. 9362
Author(s):  
Haopeng Li ◽  
Zurong Qiu ◽  
Haodan Jiang

Optical metrology has experienced a fast development in recent years—cross laser-pattern has become a common cooperative measuring marker in optical metrology equipment, such as infrared imaging equipment or visual 3D measurement system. The rapid and accurate extraction of the center point and attitude of the cross-marker image is the first prerequisite to ensure the measurement speed and accuracy. In this paper, a cross laser-pattern is used as a cooperative marker, in view of the high resolution of the cross laser-pattern image in the project and the vulnerability to adverse environmental effects, such as stray light, smoke, water mist and other interference in the environment, resulting in poor contrast, low signal-to-noise ratio (SNR), uneven energy distribution. As a result, a method is proposed to detect the center point and attitude of cross laser-pattern image based on Gaussian fitting and least square fitting. Firstly, the distortion of original image is corrected in real time, the corrected image is smoothed by median filter, and the noise is suppressed while preserving the edge sharpness and detail of the image. In order to adapt to different environments, the maximum inter-class variance method of threshold automatic selection is used to determine the threshold of image segmentation to eliminate the background interference caused by different illumination intensities. To improve the real-time performance of the algorithm, the four cross laser edge pixels are obtained by line search, and then fitted by least square. With the edge lines, the transverse and portrait line of the cross-laser image are separated, then we calculate Gaussian center points of all Gaussian sections of transverse and portrait lines based on Gaussian fitting method, respectively. Based on the traditional line fitting method, the sub-pixel center of the transverse and portrait laser strip images are fitted by removing the Outlying Points, and the center coordinates and attitude information of the cross laser-pattern are calculated by using the center equation of the laser strip, realizing cross laser-pattern center and attitude accurate positioning. The results show that the method is robust, the center positioning accuracy is better than 0.6 pixels, the attitude positioning accuracy is better than ±15” under smoke and water mist environment and the processing speed is better than 0.1 s, which meets the real-time requirements of the project.


2021 ◽  
Author(s):  
Claas Falldorf ◽  
Mostafa Agour ◽  
André Müller ◽  
Ralf Bergmann

ACTA IMEKO ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 108
Author(s):  
Luis Martins ◽  
Álvaro Ribeiro ◽  
Maria Do Céu Almeida ◽  
João Alves e Sousa

<p class="Abstract">Optical metrology has an increasing impact on observation and experimental activities in Civil Engineering, contributing to the Research and development of innovative, non-invasive techniques applied in testing and inspection of infrastructures and construction materials to ensure safety and quality of life. Advances in specific applications are presented in the paper, highlighting the application cases carried out by LNEC (the Portuguese National Laboratory for Civil Engineering). </p><p class="Abstract">The examples include: (i) structural monitoring of a long-span suspension bridge; (ii) use of close circuit television (CCTV) cameras in drain and sewer inspection; (iii) calibration of a large-scale seismic shaking table with laser interferometry; (iv) destructive mechanical testing of masonry specimens.</p><p class="Abstract">Current and future research work in this field is emphasized in the final section. Examples given are related to the use of Moiré techniques for digital modelling of reduced-scale hydraulic surfaces and to the use of laser interferometry for calibration of strain measurement standard for the geometrical evaluation of concrete testing machines.</p>


Sign in / Sign up

Export Citation Format

Share Document