scholarly journals Measurement of energy spectrum by using 100 eyes Tomographic PIV

Author(s):  
Yuki Harada ◽  
Kazuto Saiga ◽  
Jun Sakakibara

PIV is one of the methods to measure velocity in a flow field, but its dynamic velocity range is narrower than other flow velocimeter. This disadvantage is particularly apparent in measurements of spectrum in turbulent boundary layers, where the higher wave number side of the spectrum cannot be measured with high accuracy. In this study, we captured images of the same particle in the flow field from many different direction simultaneously, and reduced the measurement error of the particle displacement by averaging the acquired particle positions, so called ‘Multiple Eye PIV’ [Maekawa, A., Sakakibara, J., 2018, Meas. Sci. Tech., 29, 064011]. We applied this method to obtain the energy spectrum in a turbulent pipe flow aiming for resolving higher wave number. Particle images were captured by a single high-speed CMOS camera (Fastcam Nova S6, 6000 fps, Photron) through a mirror array consists of 110 flat mirrors arranged in the shape of an axisymmetric ellipsoid (Fig.1), as shown in Fig.2. The images were evaluated by Tomographic PIV method to resolve three-dimensional velocity field. Fig.3 shows energy spectrum in a pipe measured by Tomographic-PIV with number of mirrors, N, up to 100 in addition to the 2D2C-PIV with a single mirror. Although the spectrum curve for the result of Tomographic-PIV begins to depart from the reference curve at wavenumber beyond 10-1 , such wavenumber grows as N increases, and consequently the plateau of the curve appeared at lower energy. Such a downward shift of the plateau is expected due to the improvement of the dynamic velocityrange, which is approximately one order in energy, i.e. three times in velocity, found between N=4 and 100. Note that the cases of N=4 and 40 loses the dynamic range against the 2C2D-PIV case. From the above, we can summarize that the advantage of Multiple Eye PIV over the 2C2D-PIV is effective when the number of mirrors is more than 40. In this experiment, the issue is that particles images flickered. In order to resolve this issue, we tried to use fluorescent particles, and obtained a clear particle images in the following experiment. We are now analyzing whether the energy spectrum can be measured with higher accuracy due to improved resolution of the particles.

Author(s):  
Jose Roberto Moreto ◽  
Xiaofeng Liu

Turbulence is inherently a three-dimensional and time dependent flow phenomenon (Pope, 2001). Because of the ubiquitous existence of turbulent flows in nature, accurate characterization of turbulent flows, either through experimental measurements or through direct numerical simulations, is of paramount importance for modeling turbulence (Liu and Katz, 2018). Since its inception in 1984 (Adrian, 1984), Particle Image Velocimetry (PIV), among several other conventional techniques used for turbulence measurements, has been a valuable tool for providing reliable experimental data for turbulence research. Several advancements in hardware such as high-speed cameras, together with innovative algorithms and procedures, have extended the scope of PIV to a variety of applications. Westerweel et al. (2013) point out in a recent review article that one of the main advantages of the PIV measurement is its unique ability in measuring quantitatively spatial derivatives of the flow field. With the development of Tomographic PIV introduced by Elsinga et al. (2006), it is now possible to measure simultaneously the distributions of three velocity components in a three-dimensional flow field, thus enabling us to measure all the velocity derivatives of a turbulent flow. However, for a thorough characterization of a turbulent flow, in addition to the velocity gradients, the instantaneous pressure distribution in the 3D flow field also needs to be measured.


2020 ◽  
Vol 8 (12) ◽  
pp. 975
Author(s):  
Cong Sun ◽  
Chunyu Guo ◽  
Chao Wang ◽  
Lianzhou Wang ◽  
Jianfeng Lin

The interactions between the main hull and demi-hull of trimarans have been arousing increasing attention, and detailed circumferential flow fields greatly influence trimaran research. In this research, the unsteady wake flow field of a trimaran was obtained by Reynolds-Averaged Navier-Stokes (RANS) equations on the basis of the viscous flow principles with consideration of the heaving and pitching of the trimaran. Then, we designed an experimental method based on particle-image velocimetry (PIV) and obtained a detailed flow field between the main hull and demi-hull of the trimaran. A trimaran model with one demi-hull made of polycarbonate material with 90% light transmission rate and a refractive index 1.58 (close to that of water 1.33) was manufactured as the experiment sample. Using polycarbonate material, the laser-sheet light-source transmission and high-speed camera recording problems were effectively rectified. Moreover, a nonstandard calibration was added into the PIV flow field measurement system. Then, we established an inverse three-dimensional (3D) distortion coordinate system and obtained the corresponding coordinates by using optics calculations. Further, the PIV system spatial mapping was corrected, and the real flow field was obtained. The simulation results were highly consistent with the experimental data, which showed the methods established in this study provided a strong reference for obtaining the detailed flow field information between the main hull and demi-hull of trimarans.


2018 ◽  
Vol 41 (4) ◽  
pp. 990-1001
Author(s):  
Song Ma ◽  
Jianguo Tan ◽  
Xiankai Li ◽  
Jiang Hao

This paper establishes a novel mathematical model for computing the plume flow field of a carrier-based aircraft engine. Its objective is to study the impact of jet exhaust gases with high temperature, high speed and high pressure on the jet blast deflector. The working condition of the nozzle of a fully powered on engine is first determined. The flow field of the exhaust jet is then numerically simulated at different deflection angle using the three-dimensional Reynolds averaged Navier–Stokes equations and the standard [Formula: see text]-[Formula: see text] turbulence method. Moreover, infra-red temperature tests are further carried out to test the temperature field when the jet blast deflector is at the [Formula: see text] deflection angle. The comparison between the simulation results and the experimental results show that the proposed computation model can perfectly describe the system. There is only 8–10% variation between them. A good verification is achieved. Moreover, the experimental results show that the jet blast deflector plays an outstanding role in driving the high-temperature exhaust gases. It is found that [Formula: see text] may be the best deflection angle to protect the deck and the surrounding equipment effectively. These data results provide a valuable basis for the design and layout optimization of the jet blast deflector and deck.


Author(s):  
Shoichi Kodate ◽  
Tatsuya Kubo ◽  
Shinji Ebara ◽  
Hidetoshi Hashizume

In this study, the characteristic of the swirling flow was analyzed in detail in terms of flow field by means of a visualization experiment using matched refractive index PIV measurement to evaluate the applicability of the swirling flow generated downstream of a three-dimensionally connected dual elbow to the divertor cooling. The dual elbow used in the experiment comprises two 90-degree elbows with the same curvature connected directly in three-dimensional configuration. From the experiment, it was found that strong swirling velocity component appears locally near the pipe wall downstream of the second elbow. Moreover, although the strength of the swirling flow changed gradually as it flowed downstream, it attenuated little even 8D downstream of the dual elbow, where D was the diameter of the piping. Therefore, this swirling flow is expected to survive for a considerable distance downstream of the elbow, and the applicability of this flow field to divertor cooling can be promising. Furthermore turbulence quantities such as Reynolds stress were analyzed in terms of heat transfer performance. Since there were some regions where larger Reynolds stress than a developed turbulent pipe flow was observed near the pipe wall, high heat transfer is expected there.


Author(s):  
Christoph Biegger ◽  
Bernhard Weigand ◽  
Alice Cabitza

Swirl cooling is a very efficient method for turbine blade cooling. However, the flow in such a system is quite complicated. In order to gain understanding of the flow structure, the velocity field in a leading edge swirl cooling chamber with two tangential inlet ducts is experimentally studied via Particle Image Velocimetry (PIV). The examined swirl tube is 1 m long and has a diameter of 50 mm. It represents an upscaled generic model of a leading edge swirl chamber. The Reynolds number, defined by the bulk velocity and the swirl tube diameter, ranges from 10,000 to 40,000, and the swirl number is 5.3. Velocity fields are measured in the center plane of the tube axis with stereo- and tomographic-PIV using two and four CCD cameras respectively. Tomographic-PIV is a three-dimensional PIV technique relying on the illumination, recording, reconstruction and cross correlation of a tracer particle distribution in a measurement volume opposed to a plane in stereo-PIV. For statistical analysis 2,000 vector maps are calculated and evaluations show a sample size of 1,000 ensembles is sufficient. Our experiment showed, that the flow field is characterized by a vortex system around the tube axis. Near the tube wall we observed an axial flow towards the outlet with a circumferential velocity component in the same order of magnitude. In contrast the vortex core consists of an axial backflow (vortex breakdown). The gained understanding of the flow field allows to predict regions of enhanced heat transfer in swirl chambers.


Author(s):  
M. Funes-Gallanzi ◽  
P. J. Bryanston-Cross ◽  
K. S. Chana

The quantitative whole field flow visualization technique of PIV has over the last few years been successfully demonstrated for transonic flow applications. A series of such measurements has been made at DRA Pyestock. Several of the development stages critical to a full engine application of the work have now been achieved using the Isentropic Light Piston Cascade (ILPC) test facility operating with high inlet turbulence levels: • A method of seeding the flow with 0.5μm diameter styrene particles has provided an even coverage of the flow field. • A method of projecting a 1 mm thick high power Nd/YAG laser light sheet within the turbine stator cascade. This has enabled a complete instantaneous intra-blade velocity mapping of the flow field to be visualized, by a specially developed diffraction-limited optics arrangement. • Software has been developed to automatically analyze the data. Due to the sparse nature of the data obtained, a spatial approach to the extraction of the velocity vector data was employed. • Finally, a comparison of the experimental results with those obtained from a three-dimensional viscous flow program of Dawes; using the Baldwin-Lomax model for eddy viscosity and assuming fully turbulent flow. The measurements provide an instantaneous quantitative whole field visualization of a high-speed unsteady region of flow in a highly three-dimensional nozzle guide vane; which has been successfully compared with a full viscous calculation. This work represents the first such measurements to be made in a full-size transonic annular cascade at engine representative conditions.


2012 ◽  
Vol 19 ◽  
pp. 293-303 ◽  
Author(s):  
HUA-SHU DOU ◽  
BOO CHEONG KHOO

The energy gradient theory for flow instability and turbulent transition was proposed in our previous work. The theoretical result obtained accords well with some experimental data for pipe and channel flows in the literature. In the present study, the energy gradient theory is extended to examine the effect of disturbance frequency on turbulent transition. Then, the energy spectrum of disturbance at the turbulent transition is obtained, which scales with the wave number by an exponent of –2. This scaling is near to the K41 law of –5/3 for the full developed isentropic homogenous turbulence. The difference for the two energy spectra may be due to the intermittency of turbulence at the transition state. The intermittence causes the distribution of the energy spectrum to take on a steeper gradient (tending to –2 from –5/3). Finally, the flow instability leading to turbulent transition can be classified as two-dimensional (2D) or three-dimensional (3D) in terms of the wave number and the Re. It is found that there is an optimum wave number which separates the 2D and 3D transitions and at which the disturbance energy at transition is minimum.


2000 ◽  
Vol 122 (4) ◽  
pp. 683-688 ◽  
Author(s):  
H. Huitenga ◽  
N. K. Mitra

For the use as a startup device the characteristic of a hydrodynamic coupling has to be steep at the nominal high speed operation condition and flat in the range of lower speed ratios. The economical design of the runner requires that the mass and the volume of the coupling should be as small as possible. The flow field in a starting configuration is simulated and a detailed analysis of the three-dimensional flow field is performed to deduce constructional modifications which meet both requests. The analysis shows that several modifications on pump and turbine runner seem to be successful. The consequences of the variation of the runner geometries will be discussed in detail in Part II of this paper. [S0098-2202(00)02104-0]


Author(s):  
Laura Ekstrand ◽  
Song Zhang

Measuring three-dimensional (3D) surfaces with extremely high contrast (e.g., partially shiny surfaces) is extremely difficult with optical metrology methods. Conventional techniques, which involve measurement from multiple angles or camera aperture adjustments, pose issues for high accuracy measurement in the manufacturing industry because they are difficult to automate and often induce undesirable vibrations in the calibrated measurement system. This paper presents a framework for optically capturing high-contrast 3D surfaces via flexible exposure time variation. This technique leverages the binary defocusing technique that was recently developed at Iowa State University to allow digital fringe projection with a camera exposure time far shorter than the projector’s projection period. Since the camera exposure time can be rapidly adjusted in software, the proposed technique could be automated without mechanical adjustments to the measurement system. Moreover, the exposure times are sufficiently short as to be efficiently packed into a projection period, giving this technique the potential for high speed applications. Experimental results will be presented to demonstrate the success of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document