Experimental demonstration of a broadband optoelectronic chaos system based on highly nonlinear configuration of IQ modulator

2021 ◽  
Vol 46 (18) ◽  
pp. 4654
Author(s):  
Hanwen Luo ◽  
Mengfan Cheng ◽  
Chuanming Huang ◽  
Bolin Ye ◽  
Weidong Shao ◽  
...  
2008 ◽  
Vol 128 (4) ◽  
pp. 677-682 ◽  
Author(s):  
Taku Takaku ◽  
Noriyuki Iwamuro ◽  
Yoshiyuki Uchida ◽  
Ryuichi Shimada

2002 ◽  
Vol 728 ◽  
Author(s):  
Munir H. Nayfeh

AbstractWe dispersed electrochemically etched Si into ultrabright ultrasmall nanoparticles, with brightness higher than fluorescein or rhodamine. The emission from single particles is readily detectable. Aggregates or films of the particles exhibit emission with highly nonlinear characteristics. We observe directed blue beams at ∼ 410 nm between faces of aggregates excited by femtosecond radiation at 780 nm; and at ∼ 610 nm from aggregates of red luminescent Si nanoparticles excited by radiation at 550-570 nm from a mercury lamp. Intense directed Gaussian beams, a pumping threshold, spectral line narrowing, and speckle patterns manifest the emission. The results are analyzed in terms of population inversion and stimulated emission in quantum confinement-induced Si-Si dimer phase, found only on ultrasmall Si nanoparticles. This microlasing constitutes an important step towards the realization of a laser on a chip.


2011 ◽  
Vol 39 (3) ◽  
pp. 193-209 ◽  
Author(s):  
H. Surendranath ◽  
M. Dunbar

Abstract Over the last few decades, finite element analysis has become an integral part of the overall tire design process. Engineers need to perform a number of different simulations to evaluate new designs and study the effect of proposed design changes. However, tires pose formidable simulation challenges due to the presence of highly nonlinear rubber compounds, embedded reinforcements, complex tread geometries, rolling contact, and large deformations. Accurate simulation requires careful consideration of these factors, resulting in the extensive turnaround time, often times prolonging the design cycle. Therefore, it is extremely critical to explore means to reduce the turnaround time while producing reliable results. Compute clusters have recently become a cost effective means to perform high performance computing (HPC). Distributed memory parallel solvers designed to take advantage of compute clusters have become increasingly popular. In this paper, we examine the use of HPC for various tire simulations and demonstrate how it can significantly reduce simulation turnaround time. Abaqus/Standard is used for routine tire simulations like footprint and steady state rolling. Abaqus/Explicit is used for transient rolling and hydroplaning simulations. The run times and scaling data corresponding to models of various sizes and complexity are presented.


Sign in / Sign up

Export Citation Format

Share Document