Broadband Meta-hologram Enabled by a Double-Face Copper-Cladded Metasurface Based on Reflection–Transmission Amplitude Coding

2021 ◽  
Author(s):  
Lei Zhu ◽  
Wenjuan Zhou ◽  
Liang Dong ◽  
Chunsheng Guan ◽  
Guanyu Shang ◽  
...  
Author(s):  
Anja Schönhardt ◽  
Dietmar Nau ◽  
Christina Bauer ◽  
André Christ ◽  
Hedi Gräbeldinger ◽  
...  

We characterized the electromagnetic field of ultra-short laser pulses after propagation through metallic photonic crystal structures featuring photonic and plasmonic resonances. The complete pulse information, i.e. the envelope and phase of the electromagnetic field, was measured using the technique of cross-correlation frequency resolved optical gating. In good agreement, measurements and scattering matrix simulations show a dispersive behaviour of the spectral phase at the position of the resonances. Asymmetric Fano-type resonances go along with asymmetric phase characteristics. Furthermore, the spectral phase is used to calculate the dispersion of the sample and possible applications in dispersion compensation are investigated. Group refractive indices of 700 and 70 and group delay dispersion values of 90 000 fs 2 and 5000 fs 2 are achieved in transverse electric and transverse magnetic polarization, respectively. The behaviour of extinction and spectral phase can be understood from an intuitive model using the complex transmission amplitude. An associated depiction in the complex plane is a useful approach in this context. This method promises to be valuable also in photonic crystal and filter design, for example, with regards to the symmetrization of the resonances. This article is part of the themed issue ‘New horizons for nanophotonics’.


2007 ◽  
Vol 85 (9) ◽  
pp. 967-979
Author(s):  
R K Dubey ◽  
V J Menon ◽  
M K Pandey ◽  
D N Tripathi

The zero-range interaction U(x) occurring in the one-dimensional, time-independent Schrödinger equation is regarded as a smoothed distribution characterized by a tiny length scale b such that the origin becomes an ordinary point. A neighbourhood around the origin is scanned by defining inner demarcation points a±≡ ±b/N and outer demarcation points b±≡ ±Nb with N >> 1. Then a sequence of simple Lemmas permits (i) construction of a systematic procedure for simultaneously solving the scattering wave function ψ(0) at the origin, its derivative ψ'(0) there, the transmission amplitude B, as well as the reflection amplitude D; and (ii) unambiguous application to scattering by the previously known δ'(x) and newly proposed quasi δ'(x) potentials in the Cauchy representation of various distributions.PACS No.: 03.65.Nk


2020 ◽  
Vol 8 (19) ◽  
pp. 2000449 ◽  
Author(s):  
Jing Lou ◽  
Jiangang Liang ◽  
Ying Yu ◽  
Hua Ma ◽  
Ruisheng Yang ◽  
...  

2000 ◽  
Vol 11 (2) ◽  
pp. 89-95
Author(s):  
Toru Yamamoto ◽  
Toshikazu Nambu ◽  
Hiroyuki Date ◽  
Kazuo Miyasaka

F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 1311
Author(s):  
Noorlindawaty Md Jizat ◽  
Zubaida Yusoff ◽  
Arevinthran A/L Nallasamy ◽  
Yoshihide Yamada

Beamforming is a key element of 5G that uses advanced antenna technologies to focus a wireless signal to a defined direction. Butler Matrix (BM) as a beamforming network is used to control the beam direction by utilizing the amplitude and the output phase. A particular technique for designing BM is through substrate integrated waveguide (SIW), which is used to realize the bilateral edge wall vias where the waveguide mode propagates through to support the current flow and reduce the loss of surface wave. Unlike conventional BM, the proposed design requires only hybrid couplers and phase shifter without any crossover. In this BM structure, the SIW hybrid coupler is designed, with two phase shifters of -90°, and one phase shifter of -180° to control the amplitude and phase shifting. This results in an optimized transmission amplitude and output phase difference. The BM also circumvents any crossover, to provide minimal losses. The hybrid coupler exhibits Sii and Sij characteristics at 28 GHz, with values of -27.35 dB for return loss, -3.9 dB for insertion loss, -3.2 dB for coupling, and -26.54 dB for the isolation. In the BM design, high transmission efficiency is observed where the return loss is less than -10 dB, while minimal transmission amplitudes are obtained within the values of ‒6 ± 3 dB. The three-port BM is designed using SIW with minimal loss and the phase difference at each respective output port of the BM shows values of 0°, -120°, and 120°. The three consecutive beams with the gains of 11.1 dBi for port 1 excitation, 9.06 dBi for port 2 excitation and 10.4 dBi for port 3 excitation is achieved when the antenna array is fed to the BM, and each of the radiated beams has beam angles of 0, -27 and 27 degrees.


2019 ◽  
Vol 7 (8) ◽  
pp. 1801429 ◽  
Author(s):  
Rui Yuan Wu ◽  
Lei Zhang ◽  
Lei Bao ◽  
Liang Wei Wu ◽  
Qian Ma ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document