scholarly journals 5G Millimeter-Wave Beamforming System using Substrate Integrated Waveguide

F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 1311
Author(s):  
Noorlindawaty Md Jizat ◽  
Zubaida Yusoff ◽  
Arevinthran A/L Nallasamy ◽  
Yoshihide Yamada

Beamforming is a key element of 5G that uses advanced antenna technologies to focus a wireless signal to a defined direction. Butler Matrix (BM) as a beamforming network is used to control the beam direction by utilizing the amplitude and the output phase. A particular technique for designing BM is through substrate integrated waveguide (SIW), which is used to realize the bilateral edge wall vias where the waveguide mode propagates through to support the current flow and reduce the loss of surface wave. Unlike conventional BM, the proposed design requires only hybrid couplers and phase shifter without any crossover. In this BM structure, the SIW hybrid coupler is designed, with two phase shifters of -90°, and one phase shifter of -180° to control the amplitude and phase shifting. This results in an optimized transmission amplitude and output phase difference. The BM also circumvents any crossover, to provide minimal losses. The hybrid coupler exhibits Sii and Sij characteristics at 28 GHz, with values of -27.35 dB for return loss, -3.9 dB for insertion loss, -3.2 dB for coupling, and -26.54 dB for the isolation. In the BM design, high transmission efficiency is observed where the return loss is less than -10 dB, while minimal transmission amplitudes are obtained within the values of ‒6 ± 3 dB. The three-port BM is designed using SIW with minimal loss and the phase difference at each respective output port of the BM shows values of 0°, -120°, and 120°. The three consecutive beams with the gains of 11.1 dBi for port 1 excitation, 9.06 dBi for port 2 excitation and 10.4 dBi for port 3 excitation is achieved when the antenna array is fed to the BM, and each of the radiated beams has beam angles of 0, -27 and 27 degrees.

2019 ◽  
Vol 8 (3) ◽  
pp. 1028-1035
Author(s):  
Norhudah Seman ◽  
Nazleen Syahira Mohd Suhaimi ◽  
Tien Han Chua

This paper presents the designs of phase shifters for multi-beam Nolen matrix towards the fifth generation (5G) technology at 26 GHz. The low-cost, lightweight and compact size 0° and 45° loaded stubs and chamfered 90°, 135° and 180° Schiffman phase shifters are proposed at 26 GHz. An edge at a corner of the 50 Ω microstrip line Schiffman phase shifter is chamfered to reduce the excess capacitance and unwanted reflection. However, the Schiffman phase shifter topology is not relevant to be applied for the phase shifter less than 45° as it needs very small arc bending at 26 GHz. The stubs are loaded to the phase shifter in order to obtain electrical lengths, which are less than 45°. The proposed phase shifters provide return loss better than 10 dB, insertion loss of -0.97 dB and phase difference imbalance of ± 4.04° between 25.75GHz and 26.25 GHz. The Rogers RT/duroid 5880 substrate with dielectric constant of 2.2 and substrate thickness of 0.254 mm is implemented in the designs.


J ◽  
2021 ◽  
Vol 4 (3) ◽  
pp. 444-451 ◽  
Author(s):  
Jinfeng Li

The demand for reconfigurable millimetre-wave (mm-Wave) components based on highly anisotropic liquid crystals (LC) is higher than ever before for the UK and worldwide. In this work, 60 GHz investigation on a bespoke shielded coplanar waveguide (SCPW) phase shifter structure filled with 16 types of microwave-enabled nematic LCs respectively indicates that the patterns of the device’s figure-of-merit (FoM, defined as the ratio of maximum differential phase shift to maximum insertion loss) reshuffle from those of the characterised LC materials’ FoM (defined as the ratio of tunability to maximum dissipation factor). To be more specific, GT7-29001- and MDA-03-2838-based phase shifters exhibit the highest FoM for devices, outperforming phase shifters based on GT5-28004 and TUD-566 with the highest FoM for materials. Such a mismatch between the device’s FoM and LC’s FoM implies a nonlinearly perturbed wave-occupied volume ratio effect. Furthermore, the relationship between insertion loss and the effective delay line length is nonlinear, as evidenced by measurement results of two phase shifters (0–π and 0–2π, respectively). Such nonlinearities complicate the established FoM metrics and potentially lead to a renewed interest in the selection and material synthesis of LCs to optimise reconfigurable mmWave devices, and promote their technological exploitation in phased array systems targeting demanding applications such as inter-satellite links and satellite internet.


Author(s):  
Salah Eldeen Gasim Mohamed

Integration of renewable energy sources (RESs) and electric vehicles (EVs) to electric power grids is increasing. These RESs and EVs may introduce major problems to grid such as transmission lines congestion. Owing to the causative factors nature, congestion may regularly happen and continue forlong commulative time. Thus, transmission efficiency (TE) is a major factorwhen relieving congestion. Congestion can be relieved by using phase shifting transformers (PSTs), hybrid phase shifters (HPSs), or flexible AC transmission system (FACTS) devices. However, PSTs have technical drawbacks such as their large steps, which may result in increased losses, and FACTS devices cost is high. This paper investigates benefits of using an HPS rather than a PST in terms of TE. As HPS operates continuously, it provides more precise control of active power flow than PST. A modified IEEE-14 bus test system is used and a security margin is kept in each simulated case with HPS/PST. Results revealed higher TE when an HPS is used. Thus, RESs and EVs can be more optimally hosted with HPSs.


2019 ◽  
Vol 2019 ◽  
pp. 1-7
Author(s):  
Ke Han ◽  
Wuyu Li ◽  
Yibin Liu

This paper proposes a new Butler matrix topology. The proposed Butler matrix consists of only four couplers without phase shifters and crossovers. The output phase difference is relatively flexible. Compared with the phase differences (±45° and ±135°) generated by the conventional Butler matrix, the proposed design can generate different sets of phase differences, which can be realized from −180° to 180°. The proposed new Butler matrix replaces the traditional 90° coupler with arbitrary phase-difference couplers. In this paper, closed-form design equations are derived and presented. A 4 × 4 Butler matrix with output phase differences of −30°, +150°, −120°, and +60° is designed according to equations. The 4 × 4 Butler is meant to operate at 2 GHz. The simulation results show that the amplitude unbalance is less than 0.1 dB, the phase mismatch is within 1°, the return loss is higher than 29 dB, and the isolation is higher than 32 dB.


2021 ◽  
Author(s):  
Vijay Jutru ◽  
Maheswari S

The objective is to design a compact branch line coupler to operate at a 2.4GHz frequency. The branch line coupler focuses on -3dB power division with 900 phase difference. T-shaped structure is used to construct the compact branch line coupler. Conventional branch line coupler is also designed and counterfeit using ADS software along with the compact branch line coupler for comparison. The S-parameters for the both coupler are counterfeit and compared. The simulation results of compact branch line coupler had Better return loss, isolation, amplitude and phase difference are all accomplished. Using the proposed method 44% size reduction is achieved. Many microwave applications and integrated circuits, such as amplifier, phase shifters and balanced mixers use branch line couplers.


Author(s):  
Divya Singh ◽  
Aasheesh Shukla

Background : Millimeter wave technology is the emerging technology in wireless communication due to increased demand for data traffic and its numerous advantages however it suffers from severe attenuation. To mitigate this attenuation, phased antenna arrays are used for unidirectional power distribution. An initial access is needed to make a connection between the base station and users in millimeter wave system. The high complexity and cost can be mitigated by the use of hybrid precoding schemes. Hybrid precoding techniques are developed to reduce the complexity, power consumption and cost by using phase shifters in place of converters. The use of phase shifters also increases the spectral efficiency. Objective: Analysis of Optimum Precoding schemes in Millimeter Wave System. Method: In this paper, the suitability of existing hybrid precoding solutions are explored on the basis of the different algorithms and the architecture to increase the average achievable rate. Previous work done in hybrid precoding is also compared on the basis of the resolution of the phase shifter and digital to analog converter. Results: A comparison of the previous work is done on the basis of different parameters like the resolution of phase shifters, digital to analog converter, amount of power consumption and spectral efficiency. Table 2 shows the average achievable rate of different algorithms at SNR= 0 dB and 5 dB. Table 3 also compares the performance achieved by the hybrid precoder in the fully connected structure with two existing approaches, dynamic subarray structure with and without switch and sub connected or partially connected structure. Table 4 gives the comparative analysis of hybrid precoding with the different resolutions of the phase shifter and DAC. Conclusion: In this paper, some available literature is reviewed and summarized about hybrid precoding in millimeter wave communication. Current solutions of hybrid precoding are also reviewed and compared in terms of their efficiency, power consumption, and effectiveness. The limitations of the existing hybrid precoding algorithms are the selection of group and resolution of phase shifters. The mm wave massive MIMO is only feasible due to hybrid precoding.


Frequenz ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Hamsakutty Vettikalladi ◽  
Waleed Tariq Sethi ◽  
Mohammed Himdi ◽  
Majeed Alkanhal

Abstract This article presents a 60 GHz coplanar fed slotted antenna based on substrate integrated waveguide (SIW) technology for beam-tilting applications. The longitudinal passive slots are fed via associated SIW holes adjacent to the coplanar feed while the main excitation is provided from the microstrip-to-SIW transition. The antenna array achieves an impedance bandwidth of 57–64 GHz with gains reaching to 12 dBi. The passive SIW slots are excited with various orientations of coplanar feeds and associated holes covering an angular beam-tilting from −56° to +56° with an offset of 10° at the central frequency. The novelty of this work is; beam-tilting is achieved without the use of any active/passive phase shifters which improves the design in terms of losses and provide a much simpler alternative compared to the complex geometries available in the literature at the 60 GHz band.


Electronics ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 181
Author(s):  
Ivo Marković ◽  
Milka Potrebić ◽  
Dejan Tošić

Digital potentiometers are substantial components for the design of many mixed-signal electronic circuits and systems. Their capability to program resistance value almost instantly provides hardware designers an additional level of freedom. Unfortunately, this feature is limited to DC and lower frequencies, due to parasitic effects. Nowadays, memristors as continuously tunable resistors are becoming candidates for potentiometer successors. Memristors are two-terminal non-volatile devices which have less significant parasitic effects and a wide resistance range. The memristance value can be changed on the fly. Using nanotechnology, memristor implementation has a nanoscale footprint with nanosecond transition between resistive states. In this paper, we present a comparison between the frequency characteristics of digital potentiometers and the only commercially available memristors. Memristor parasitic effects dominate at higher frequencies which extends the bandwidth. In order to present the advantages of memristive circuits, we have analyzed and implemented tunable circuits such as a voltage divider, an inverting amplifier, a high-pass filter, and a phase shifter. A commercially available memristor by KnowM Inc. is used for this purpose. Experimental results obtained by the measurements verify that a memristor has equal or better characteristics than a digital potentiometer. Memristive realizations of voltage dividers and inverting amplifiers have a wider bandwidth, while filters and phase shifters with a memristor have almost identical frequency characteristics as the corresponding realizations with a digital potentiometer.


Author(s):  
Aparna B. Barbadekar ◽  
Pradeep M. Patil

Abstract The paper proposes a system consisting of novel programmable system on chip (PSoC)-controlled phase shifters which in turn guides the beam of an antenna array attached to it. Four antennae forming an array receive individual inputs from the programmable phase shifters (IC 2484). The input to the PSoC-based phase shifter is provided from an optimized 1:4 Wilkinson power divider. The antenna consists of an inverted L-shaped dipole on the front and two mirrored inverted L-shaped dipoles mounted on a rectangular conductive structure on the back which resonates in the ISM/Wi-Fi band (2.40–2.48 GHz). The power divider is designed to provide the feed to the phase shifter using a beamforming network while ensuring good isolation among the ports. The power divider has measured S11, S21, S31, S41, and S51 to be −14, −6.25, −6.31, −6.28, and −6.31 dB, respectively at a frequency of 2.45 GHz. The ingenious controller is designed in-house using a PSoC microcontroller to regulate the control voltage of individual phase shifter IC and generate progressive phase shifts. To validate the calibration of the in-house designed control circuit, the phased array is simulated using $s_p^2$ touchstone file of IC 2484. This designed control circuit exhibits low insertion loss close to −8.5 dB, voltage standing wave ratio of 1.58:1, and reflection coefficient (S11) is −14.36 dB at 2.45 GHz. Low insertion loss variations confirm that the phased-array antenna gives equal amplitude and phase. The beamforming radiation patterns for different scan angles (30, 60, and 90°) for experimental and simulated phased-array antenna are matched accurately showing the accuracy of the control circuit designed. The average experimental and simulated gain is 13.03 and 13.48 dBi respectively. The in-house designed controller overcomes the primary limitations associated with the present electromechanical phased array such as cost weight, size, power consumption, and complexity in design which limits the use of a phased array to military applications only. The current study with novel design and enhanced performance makes the system worthy of the practical use of phased-array antennas for common society at large.


Sign in / Sign up

Export Citation Format

Share Document