Silicon‐Based Terahertz Meta‐Devices for Electrical Modulation of Fano Resonance and Transmission Amplitude

2020 ◽  
Vol 8 (19) ◽  
pp. 2000449 ◽  
Author(s):  
Jing Lou ◽  
Jiangang Liang ◽  
Ying Yu ◽  
Hua Ma ◽  
Ruisheng Yang ◽  
...  
Nano Letters ◽  
2013 ◽  
Vol 14 (1) ◽  
pp. 78-82 ◽  
Author(s):  
Naresh K. Emani ◽  
Ting-Fung Chung ◽  
Alexander V. Kildishev ◽  
Vladimir M. Shalaev ◽  
Yong P. Chen ◽  
...  

2006 ◽  
Vol 88 (6) ◽  
pp. 061103 ◽  
Author(s):  
M. Haurylau ◽  
S. P. Anderson ◽  
K. L. Marshall ◽  
P. M. Fauchet

2020 ◽  
Vol 8 ◽  
Author(s):  
Yufei Gao ◽  
Jianqiang Gu ◽  
Ridong Jia ◽  
Zhen Tian ◽  
Chunmei Ouyang ◽  
...  

In recent years, metasurface-based focusing elements have gradually become an indispensable type of terahertz lenses. However, the meta-lens often suffers from chromatic aberration due to the intrinsic dispersion of each element, especially in the broadband application scenarios. In this paper, we design and demonstrate a silicon-based achromatic meta-lens working from 0.6 to 1.0 THz, which is polarization insensitive because of the adopted symmetrical structures. The simulated focal length and the full width at half maximum (FWHM) of the foci at different frequencies prove the achromatic behavior of our meta-lens compared with the chromatic counterpart. We also show that the focus shift incongruence of our design originates from the transmission amplitude distribution of the meta-lens. This article not only provides an achromatic planar lens working at terahertz domain but also reveals the importance of the amplitude distribution in the achromatic metasurface design.


1999 ◽  
Vol 09 (PR8) ◽  
pp. Pr8-101-Pr8-107
Author(s):  
F. J. Martí ◽  
A. Castro ◽  
J. Olivares ◽  
C. Gómez-Aleixandre ◽  
J. M. Albella
Keyword(s):  

2001 ◽  
Vol 11 (PR3) ◽  
pp. Pr3-861-Pr3-867 ◽  
Author(s):  
S. M. Zemskova ◽  
J. A. Haynes ◽  
K. M. Cooley

1996 ◽  
Vol 444 ◽  
Author(s):  
Hyeon-Seag Kim ◽  
D. L. Polla ◽  
S. A. Campbell

AbstractThe electrical reliability properties of PZT (54/46) thin films have been measured for the purpose of integrating this material with silicon-based microelectromechanical systems. Ferroelectric thin films of PZT were prepared by metal organic decomposition. The charge trapping and degradation properties of these thin films were studied through device characteristics such as hysteresis loop, leakage current, fatigue, dielectric constant, capacitancevoltage, and loss factor measurements. Several unique experimental results have been found. Different degradation processes were verified through fatigue (bipolar stress), low and high charge injection (unipolar stress), and high field stressing (unipolar stress).


1996 ◽  
Vol 444 ◽  
Author(s):  
H. Okumoto ◽  
M. Shimomura ◽  
N. Minami ◽  
Y. Tanabe

AbstractSilicon-based polymers with σconjugated electrons have specific properties; photoreactivity for microlithography and photoconductivity for hole transport materials. To explore the possibility of combining these two properties to develop photoresists with electronic transport capability, photoconductivity of polysilanes is investigated in connection with their photoinduced chemical modification. Increase in photocurrent is observed accompanying photoreaction of poly(dimethylsilane) vacuum deposited films. This increase is found to be greatly enhanced in oxygen atmosphere. Such changes of photocurrent can be explained by charge transfer to electron acceptors from Si dangling bonds postulated to be formed during photoreaction.


2005 ◽  
Vol 862 ◽  
Author(s):  
Scott J. Jones ◽  
Joachim Doehler ◽  
Tongyu Liu ◽  
David Tsu ◽  
Jeff Steele ◽  
...  

AbstractNew types of transparent conductive oxides with low indices of refraction have been developed for use in optical stacks for the amorphous silicon (a-Si) solar cell and other thin film applications. The alloys are ZnO based with Si and MgF added to reduce the index of the materials through the creation of SiO2 or MgF2, with n=1.3-1.4, or the addition of voids in the materials. Alloys with 12-14% Si or Mg have indices of refraction at λ=800nm between 1.6 and 1.7. These materials are presently being used in optical stacks to enhance light scattering by Al/multi-layer/ZnO back reflectors in a-Si based solar cells to increase light absorption in the semiconductor layers and increase open circuit currents and boost device efficiencies. In contrast to Ag/ZnO back reflectors which have long term stability issues due to electromigration of Ag, these Al based back reflectors should be stable and usable in manufactured PV products. In this manuscript, structural properties for the materials will be reported as well as the performance of solar cell devices made using these new types of materials.


2009 ◽  
Vol E92-C (5) ◽  
pp. 708-712
Author(s):  
Dong-Heon HA ◽  
Chi Ho HWANG ◽  
Yong Soo LEE ◽  
Hee Chul LEE

Sign in / Sign up

Export Citation Format

Share Document