scholarly journals Deep tissue scattering compensation with three-photon F-SHARP

Optica ◽  
2021 ◽  
Author(s):  
Caroline Berlage ◽  
Malinda Tantirigama ◽  
Mathias Babot ◽  
Diego Di Battista ◽  
Clarissa Whitmire ◽  
...  
2021 ◽  
Author(s):  
Caroline Berlage ◽  
Malinda L. S. Tantirigama ◽  
Mathias Babot ◽  
Diego Di Battista ◽  
Clarissa Whitmire ◽  
...  

Optical imaging techniques are widely used in biological research, but their penetration depth is limited by tissue scattering. Wavefront shaping techniques are able to overcome this problem in principle, but are often slow and their performance depends on the sample. This greatly reduces their practicability for biological applications. Here we present a scattering compensation technique based on three-photon (3P) excitation, which converges faster than comparable two-photon (2P) techniques and works reliably even on densely labeled samples, where 2P approaches fail. To demonstrate its usability and advantages for biomedical imaging we apply it to the imaging of dendritic spines on GFP-labeled layer 5 neurons in an anesthetized mouse.


2020 ◽  
Vol 18 ◽  
Author(s):  
Zirui Zhang ◽  
Shangcong Han ◽  
Panpan Liu ◽  
Xu Yang ◽  
Jing Han ◽  
...  

Background: Chronic inflammation and lack of angiogenesis are the important pathological mechanisms in deep tissue injury (DTI). Curcumin is a well-known anti-inflammatory and antioxidant agent. However, curcumin is unstable under acidic and alkaline conditions, and can be rapidly metabolized and excreted in the bile, which shortens its bioactivity and efficacy. Objective: This study aimed to prepare curcumin-loaded poly (lactic-co-glycolic acid) nanoparticles (CPNPs) and to elucidate the protective effects and underlying mechanisms of wound healing in DTI models. Methods: CPNPs were evaluated for particle size, biocompatibility, in vitro drug release and their effect on in vivo wound healing. Results : The results of in vivo wound closure analysis revealed that CPNP treatments significantly improved wound contraction rates (p<0.01) at a faster rate than other three treatment groups. H&E staining revealed that CPNP treatments resulted in complete epithelialization and thick granulation tissue formation, whereas control groups resulted in a lack of compact epithelialization and persistence of inflammatory cells within the wound sites. Quantitative real-time PCR analysis showed that treatment with CPNPs suppressed IL-6 and TNF-α mRNA expression, and up-regulated TGF-β, VEGF-A and IL-10 mRNA expression. Western blot analysis showed up-regulated protein expression of TGF-β, VEGF-A and phosphorylatedSTAT3. Conclusion: Our results showed that CPNPs enhanced wound healing in DTI models, through modulation of the JAK2/STAT3 signalling pathway and subsequent upregulation of pro-healing factors.


2021 ◽  
pp. 2004391
Author(s):  
Youbin Li ◽  
Mingyang Jiang ◽  
Zhiming Deng ◽  
Songjun Zeng ◽  
Jianhua Hao
Keyword(s):  
Low Dose ◽  
X Ray ◽  

Author(s):  
Eunice Y. Chen ◽  
Dan Tse ◽  
Huagang Hou ◽  
Wilson A. Schreiber ◽  
Philip E. Schaner ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document