Determination of Retention Factors of s-Triazines Homologous Series in Water Using a Numerical Method Basing on Ościk's Equation

2006 ◽  
Vol 63 (S13) ◽  
pp. S87-S93 ◽  
Author(s):  
M. Janicka ◽  
L. Kwietniewski ◽  
N. U. Perišić-Janjić
1983 ◽  
Vol 48 (5) ◽  
pp. 1358-1367 ◽  
Author(s):  
Antonín Tockstein ◽  
František Skopal

A method for constructing curves is proposed that are linear in a wide region and from whose slopes it is possible to determine the rate constant, if a parameter, θ, is calculated numerically from a rapidly converging recurrent formula or from its explicit form. The values of rate constants and parameter θ thus simply found are compared with those found by an optimization algorithm on a computer; the deviations do not exceed ±10%.


2021 ◽  
Vol 160 ◽  
pp. 104291
Author(s):  
Andreas Beinstingel ◽  
Michael Keller ◽  
Michael Heider ◽  
Burkhard Pinnekamp ◽  
Steffen Marburg

2000 ◽  
Vol 51 (1-2) ◽  
pp. 61-64 ◽  
Author(s):  
K. H. Row ◽  
J. W. Lee

BIOMATH ◽  
2016 ◽  
Vol 5 (1) ◽  
pp. 1604231
Author(s):  
A.N. Pete ◽  
Peter Mathye ◽  
Igor Fedotov ◽  
Michael Shatalov

An inverse numerical method that estimate parameters of dynamic mathematical models given some information about unknown trajectories at some time is applied to examples taken from Biology and Ecology. The method consisting of determining an over-determined system of algebraic equations using experimental data. The solution of the over-determined system is then obtained using, for example the least-squares method. To illustrate the effectiveness of the method an analysis of examples and corresponding numerical example are presented.


2004 ◽  
Vol 03 (01) ◽  
pp. 91-102 ◽  
Author(s):  
PONMILE OLOYEDE ◽  
GENNADY MIL'NIKOV ◽  
HIROKI NAKAMURA

This paper presents a numerical method which locates caustics of classical trajectories on-the-fly. The method is conceptually simple and is applicable to a system of arbitrary dimensions. The efficiency of the method is demonstrated by determining caustics of trajectories in the 2-D Henon–Heiles potential and of trajectories used to simulate a triatomic reaction process for J (total angular momentum) = 0.


Sign in / Sign up

Export Citation Format

Share Document