solute retention
Recently Published Documents


TOTAL DOCUMENTS

137
(FIVE YEARS 7)

H-INDEX

28
(FIVE YEARS 1)

2021 ◽  
Vol 1642 ◽  
pp. 462030
Author(s):  
Bohumil Dolenský ◽  
Ameneh Tatar ◽  
Martin Havlík ◽  
Tereza Navrátilová ◽  
Jan Hajduch ◽  
...  

2020 ◽  
Author(s):  
Kamini Singha ◽  
Megan Doughty ◽  
Sawyer McFadden ◽  
Audrey Hucks Sawyer ◽  
Ellen Wohl

<p>Logjams increase hydraulic resistance and create hydraulic head gradients along the streambed that drive groundwater-surface water exchange. Here, we quantify changes in hyporheic exchange flow due to channel-spanning logjams using field measurements and numerical modeling in MODFLOW and MT3DMS. Electrical resistivity (ER) imaging was used to monitor the transport of solutes into the hyporheic zone during a series of in-stream tracer tests supplemented by in-stream monitoring. We conducted experiments in a variety of reaches in Little Beaver Creek, Colorado (USA) of varying complexity: a control reach with no logjams, a reach with a single, channel-spanning logjam, and additional jams with greater logjam complexity. Our results show that 1) higher hyporheic exchange flow occurs at reach with logjams, 2) logjams create complex hyporheic exchange flow pathways that can cause bimodal solute breakthrough behavior downstream, and 3) higher discharge rates associated with spring snowmelt increase the extent and magnitude of hyporheic exchange flow. The numerical modeling supports all three field findings, and also suggest that lower flows increase solute retention in streams, although this last conclusion is not strongly supported by field results. This study represents the first use of ER to explore hyporheic exchange flow around a naturally occurring logjam over different stream discharges and has implications for understanding how logjams influence the transport of solutes, the health of stream ecosystems, and stream restoration and conservation efforts.</p>


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Beata Polak ◽  
Adam Traczuk ◽  
Sylwia Misztal

AbstractThe problems with separation of amino acid mixtures in reversed-phase mode are the result of their hydrophilic nature. The derivatisation of the amino group of mentioned above solutes leads to their solution. For this purpose, 9-fluorenylmethoxycarbonyl chloroformate (f-moc-Cl) as the derivatisation reagent is often used. In our study, the separation of some f-moc- amino acid derivatives (alanine, phenylalanine, leucine, methionine, proline and tryptophan) with the use of micellar systems of reversed-phase high-performance thin-layer chromatography (HPTLC) and pressurized planar electrochromatography (PPEC) is investigated. The effect of surfactant concentration, its type (anionic, cationic and non-ionic) and mobile phase buffer pH on the discussed above solute migration distances are presented. Our work reveals that the increase of sodium dodecylsulphate concentration in the mobile phase has a different effect on solute retention in HPTLC and PPEC. Moreover, it also affects the order of solutes in both techniques. In PPEC, in contrast to the HPTLC technique, the mobile phase pH affects solute retention. The type of surfactant in the mobile phase also impacts solute retention and migration distances. A mobile phase containing SDS improves system efficiency in both techniques. Herein, such an effect is presented for the first time.


2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Beata Polak ◽  
Adam Traczuk ◽  
Marta Kamińska ◽  
Małgorzata Kozyra

The application of the surfactant (sodium dodecyl sulphate, SDS) as the component of the water-organic mobile phase in thin-layer chromatography and pressurized planar electrochromatography is presented. The influence of various variables on the separation of various phenolic compounds (flavonoids and phenolic acids) as model compounds with systems containing surfactant is discussed. The effect of concentration of butanol and SDS as well as pH of the mobile phase buffer on migration distance of the solute zones is investigated. The presence of SDS in the eluent affects the butanol solubility in the mobile phase. It allows using higher organic solvent concentration systems compared with the mode without surfactant. The amount of SDS in the eluent has the effect on the solute retention, whereas the eluent buffer pH affects the migration distances of ionisable phenolic acids both in HPTLC and PPEC. The migration distances of flavonoid glycosides are considerably longer than those of pure flavonoids. Considering second group of investigated solutes, derivatives of the benzoic acid migrate longer distances in comparison with the cinnamic acid ones. In addition, in the majority of experiments, ionisable compounds (phenolic acids) migrate longer distances in PPEC than nonionisable compounds (flavonoids). Additionally, the order of solutes differs in the PPEC and HPTLC system.


2017 ◽  
Vol 8 (18) ◽  
pp. 4600-4607 ◽  
Author(s):  
Krystel El Hage ◽  
Prashant Kumar Gupta ◽  
Raymond Bemish ◽  
Markus Meuwly

Sign in / Sign up

Export Citation Format

Share Document